Advertisement

Solve the following linear programming problem graphically:
Maximise    Z = 4x + y
subject to the constraints: x + y ≤ 50,  3x + y ≤ 90,  x ≥ 0, y ≥ 0


We are to maximise
Z = 4x + y
subject to the constraints
x + y ≤ 50
3x + y ≤ 90
x ≥ 0, y ≥ 0
Consider a set of rectangular cartesian axes OXY in the plane.
It is clear that any point which satisfies x ≥ 0, y ≥ 0 lies in the first quadrant.
Now we draw the graph of the line x + y = 50
For x = 0, y = 50
For y = 0, x = 50
∴ line meets OX in A(50, 0) and OY in L(0, 50)
Let us draw the graph of line 3 x + y = 90
For x = 0, y = 90
For y = 0, 3x = 90 or x = 30
∴ line meets OX in B(30, 0) and OY in M(0, 90).
Since feasible region is the region which satisfies all the constraints.
∴  OBCL is the feasible region, which is bounded.

The comer points are
O(0, 0), B(30, 0), C(20, 30), L(0, 50)
At O(0, 0), Z = 0 + 0 = 0
At B(30, 0), Z = 120 + 0 = 120
At C(20, 30), Z = 80 + 30 = 110
At L(0, 50), Z = 0 + 50 = 50
∴ maximum value = 120 at the point (30, 0).

Tips: -

Note: Coordinates of C can be found by two methods:
Method I: Draw the graph of inequalities on the graph paper. So coordinates of C can be determined.
Method II: Solve the two equation x + y = 50, 3x + y = 90 by any method to find coordinates of C.

335 Views

Advertisement

Linear Programming

Hope you found this question and answer to be good. Find many more questions on Linear Programming with answers for your assignments and practice.

Mathematics Part II

Browse through more topics from Mathematics Part II for questions and snapshot.
Advertisement