For M2+/M and M3+/M2+ systems the E° values for some metals are as follows:
Cr2+/Cr – 0.9 V Cr3+/Cr2+ – 0.4 V
Mn2+/Mn – 1.2 V Mn3+/Mn2+ + 1.5 V
Fe2+/Fe – 0.4 V Fe3+/Fe2+ + 0.8 V
Use this data to comment upon
(a) The stability of Fe3+ in acid solution as compared to that of Cr3+ or Mn3+ and
(b) In case with which iron can be oxidised as compared to the similar process for either chromium or manganese metal
Predict which of the following will be coloured in aqueous solution? Ti3+, V3+, Cu+, Sc3+, Mn2+, Fe3+ and Co2+. Give reason for each.
Compare the chemistry of actinides with that of the lanthanoids with special reference to:
(i) electronic configuration, (ii) atomic and ionic sizes, (iii) oxidation state (iv) chemical reactivity.
How would you account for the following:
(a) Of the d4 species, Cr2+ is strongly reducing while manganese(III) is strongly oxidising.
(b) Cobalt(II) is stable in aqueous solution but in the presence of complexing reagents it is easily oxidized.
(c) The d1 configuration is very unstable in ions.
Electronic configuration of Mn is [Ar] 4s2 3d5 and Configuration of iron [Ar] 4s2 3d5.
Mn3+ + 3e– → Mn2+
(more spontaneous due to higher stability of Fe3+) Fe3+ + e– → Fe2+
(less spontaneous due to higher stability of Fe3+)
Due to stability of half filled d-orbitals, Mn2+ is more stable than Mn3+ and thus its reduction is more spontaneous. Similarly Fe3+ is more stable than Fe2+ and thus its reduction is less spontaneous.