simplify a(a2 + a + 1) + 5 and find its values for (i) a = 0, (ii) a = 0, and (iii) a = -1.
(a) Add: p(p – q), q(q – r) and r(r – p)
∵ p(p - q) = p x p - p x q = p2 - pq
q(q - r) = q x q - q x r = q2 - qr
and r ( r - p) = r x r -r x p = r2 - rp
∴ adding the above products, we have
(p2 - pq ) + (q2 - qr) + (r2 - rp) = p2 - pq + q2 - qr + r2 - rp
= p2 + q2 + r2- pq - qr - rp
= p2 + q2 + r2- (pq + qr + rp)