Find points on the curve  at which the tangents are (i) parallel to the x-axis (ii) parallel to the y-axis.
Find points on the curve  at which the tangents are (i) parallel to the x-axis (ii) parallel to the y-axis.
For the curve y = 4x3 – 2x5, find all the points at which the tangent passes through the origin.
A.
The equation of curve is            ...(1)
Differentiating both sides w.r.t.x, we get,
               Â
When  x =4,  from (1),  Â
If the curve αx2 + βy2 = 1 and α' x2 + β'y2 = 1 intersect orthogonally, prove that (α – α') β β') = (β – β') α α'.Â