Show that the curve xy = a2 and x2 + y2 = 2a2 touch each ot

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

121.

Find points on the curve straight x squared over 4 plus straight y squared over 25 space equals space 1 at which the tangents are (i) parallel to the x-axis (ii) parallel to the y-axis.

76 Views

 Multiple Choice QuestionsLong Answer Type

122.

Find points on the curve straight x squared over 9 plus straight y squared over 16 space equals space 1 at which the tangents are (i) parallel to the x-axis (ii) parallel to the y-axis.

82 Views

123.

For the curve y = 4x3 – 2x5, find all the points at which the tangent passes through the origin.

123 Views

 Multiple Choice QuestionsMultiple Choice Questions

124. The points on the curve 9y2 = x3, where the normal to the curve make equal intercepts with the axes are
  • open parentheses 4 comma space plus-or-minus 8 over 3 close parentheses
  • open parentheses 4 comma space space minus 8 over 3 close parentheses
  • open parentheses 4 comma space plus-or-minus 3 over 8 close parentheses
  • open parentheses 4 comma space plus-or-minus 3 over 8 close parentheses
124 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

125. The curve y = ax3 + bx2 + cx + 5 touches the x -axis at P (– 2, 0) and cuts the y-axis at a point Q where its gradient is 3. Find a. b, c.
123 Views

126.

Show that the curves 2x = y2 and 2xy = k cut at right angles if k2 = 8

119 Views

127. Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1.
151 Views

Advertisement

128.

Show that the curve xy = a2 and x2 + y2 = 2a2 touch each other.


The given curves are
                         xy space equals straight a squared                                          ...(1)
              x2 + y2 = 2a2                                             ...(2)
Now left parenthesis straight x plus straight y right parenthesis squared space equals space straight x squared plus straight y squared plus 2 xy space equals space 2 straight a squared plus 2 straight a squared               open square brackets because space of space left parenthesis 1 right parenthesis comma space space left parenthesis 2 right parenthesis close square brackets
therefore space space space space space space left parenthesis straight x plus straight y right parenthesis squared space equals space 4 straight a squared                                                    
rightwards double arrow space space space space space straight x plus straight y equals 2 straight a comma space space minus 2 straight a                                         ...(3)
Also  left parenthesis straight x minus straight y right parenthesis squared space equals space straight x squared plus straight y squared minus 2 xy
                        equals 2 straight a squared minus 2 straight a squared space space space space space space space space space space space space space space space space                           open square brackets because space space space of space left parenthesis 1 right parenthesis comma space left parenthesis 2 right parenthesis close square brackets
                         =0
therefore space space space space space space straight x minus straight y space equals space 0                                                      ...(4)
Adding (3) and (4),  we get,
                     2 straight x space equals 2 straight a comma space space space space space space minus 2 straight a space space space space space rightwards double arrow space space space space straight x space equals space straight a comma space space space minus straight a
therefore space space space space from space left parenthesis 4 right parenthesis comma space space space space straight y space equals space straight a comma space space space space minus straight a
therefore space space space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space intersect space at space left parenthesis straight a comma space straight a right parenthesis space and space left parenthesis negative straight a comma space minus straight a right parenthesis
From space left parenthesis 1 right parenthesis comma space straight y space equals space straight a squared over straight x
therefore space space space space dy over dx space equals space minus straight a squared over straight x squared
From space left parenthesis 2 right parenthesis comma space space space 2 straight x plus 2 straight y dy over dx space equals space 0
rightwards double arrow space space space space space space dy over dx space equals space minus straight x over straight y
Let space space straight m subscript 1 comma space space straight m subscript 2 space be space slopes space of space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis
At space left parenthesis straight a comma space straight a right parenthesis
space space space space straight m subscript 1 space equals space minus straight a squared over straight a squared equals negative 1 comma space space space space space straight m subscript 2 space equals space minus straight a over straight a space equals space minus 1
therefore space space at space left parenthesis straight a comma space straight a right parenthesis space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space touch space
At space left parenthesis negative straight a comma space minus straight a right parenthesis
space space space space straight m subscript 1 space equals space minus straight a squared over straight a squared space equals space minus 1 comma space space space straight m subscript 2 space equals space minus fraction numerator negative straight a over denominator negative straight a end fraction equals negative 1
therefore space space space at space left parenthesis negative straight a comma space space space minus straight a right parenthesis comma space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space touch.

301 Views

Advertisement
Advertisement
129.

If the curve αx+ βy2 = 1 and α' x+ β'y2 = 1 intersect orthogonally, prove that (α – α') β β') = (β – β') α α'. 

73 Views

 Multiple Choice QuestionsMultiple Choice Questions

130. The slope of the tangent to the curve x = t2 + 3t – 8 , y = 2t2 – 2t – 5 at the point (2, – 1) is
  • 22 over 7
  • 6 over 7
  • 7 over 6
  • 7 over 6
94 Views

Advertisement