Show that the function f(x) = x2 is a decreasing function in (

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

131.

The slope of the normal to the curve y = 2 x2 + 3 sin x at x = 0 is

  • 3

  • 1 third
  • -3

  • -3

84 Views

132.

The line y = x + 1 is a tangent to the curve y 2 = 4x at the point

  • (1, 2)

  • (2, 3)

  • (1, -2)

  • (1, -2)

75 Views

133. The normal at the point (1, 1) on the curve 2y + x2 = 3 is
  • x + y = 0
  • x – y = 0
  • x + y + 1 = 0
  • x + y + 1 = 0
114 Views

134. The normal to the curve x2 = 4 y passing (1, 2) is
  • x + y = 3 
  • x – y = 3
  • x + y = 1
  • x + y = 1
95 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

135. Show that the function f (x) = 2 x + 3 is a strictly increasing function on R.
85 Views

136. Without using the derivative show that the function f (a) = 7x – 3 is a strictly increasing function on R.
85 Views

137. Show that the function f (x) = x2 is an increasing function in (0, ∞).
81 Views

Advertisement

138.

Show that the function f(x) = x2 is a decreasing function in (– ∞  0).


Let x1, x2 ∊ (– ∞ , 0) and let x1 < x2.
        Now,       x1 < x2
             rightwards double arrow space space space space straight x subscript 1. space straight x subscript 1 space greater than space space straight x subscript 1. space straight x subscript 2                                         open square brackets because space space space straight x subscript 1 less than 0 close square brackets
              rightwards double arrow space space straight x subscript 1 squared space greater than space straight x subscript 1. space straight x subscript 2                                                             ...(1)

Again   straight x subscript 1 space less than space straight x subscript 2
          rightwards double arrow space space straight x subscript 1. space straight x subscript 2 space space greater than space space space straight x subscript 2. end subscript space straight x subscript 2                                          open square brackets because space space straight x subscript 2 less than 0 close square brackets
          rightwards double arrow space space space space space straight x subscript 1. space straight x subscript 2 space greater than space straight x subscript 2 squared                                                            ...(2)
From (1) and (2), we get,   straight x subscript 1 squared space greater than space straight x subscript 2 squared space space space space space space or space space space space straight f left parenthesis straight x subscript 1 right parenthesis thin space greater than space straight f left parenthesis straight x subscript 2 right parenthesis
therefore space space space straight x subscript 1 space less than space straight x subscript 2 space space space space space space rightwards double arrow space space space space straight f left parenthesis straight x subscript 1 right parenthesis space greater than space straight f left parenthesis straight x subscript 2 right parenthesis
therefore space space space space straight f space is space an space decreasing space function space in space left parenthesis negative infinity comma space 0 right parenthesis.
84 Views

Advertisement
Advertisement
139.

Construct an example of a functions which is strictly increasing but whose derivative vanishes at a point in the domain of definition of the function.

82 Views

140.

Prove that the exponential function ex is strictly increasing on R.

86 Views

Advertisement