Prove that f (x) = ax + b, where a and b are constants and a > 0 is an strictly increasing function for all real values of x. without using the derivative.
Here f (x) = x3 – 3x2 + 4x
Df = R
f '(x) = 3x2 – 6x + 4 = 3 (x2 – 2x + 1) + 1 = 3 (x – 1)2 + 1 > 0 ∀ x ∊ R
∴  f is strictly increasing on R.
Prove that the function f (x) = sinx is
(i) strictly increasing inÂ
(ii) strictly decreasing inÂ
(iii) neither increasing nor decreasing in .
Prove that the function f (x) = cos x is
(i) strictly increasing inÂ
(ii) strictly decreasing inÂ
(iii) neither increasing nor decreasing inÂ