For  - π2 < x < 3π

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

461.

The smallest positive root of the equation tan(x) - x = 0 lies in

  • 0, π2

  • π2, π

  • π, 3π2

  • 3π2, 2π


462.

Let y =  ex2 and y = ex2sinx be two given curves. Then, angle between the tangents to the curves at any point of their intersection is

  • 0

  • π

  • π2

  • π4


463.

Suppose that the equation f (x) = x2 + bx + c = 0 has two distinct real roots α and β. The angle between the tangent to the curve y = f (x) at the point α + β2, fα + β2 and the positive direction of the x-axis is

  • 30°

  • 60°

  • 90°


464.

The angle of intersection between the curves y = sinx + cosx and x2 + y2 = 10, where [x] denotes the greatest integer  x, is

  • tan-13

  • tan-1- 3

  • tan-13

  • tan-11/3


Advertisement
465.

For the curve x2 + 4xy + 8y = 64 the tangents are parallel to the x-axis only at the points

  • 0, 22 and 0, - 22

  • (8, - 4) and (- 8, 4)

  • 82, - 22 and - 82, 22

  • (9, 0) and (- 8, 0)


466.

Let exp (x) denote the exponential function ex. If f (x) = expx1x, x > 0, then the minimum value off in the interval [2, 5] is

  • expe1e

  • exp212

  • exp515

  • exp313


467.

The minimum value of the function f (x) = 2x - 1 + x - 2 is

  • 0

  • 1

  • 2

  • 3


468.

Maximum value of the function f(x) = x8 + 2x on the interval [1, 6] is

  • 1

  • 98

  • 1312

  • 178


Advertisement
Advertisement

469.

For  - π2 < x < 3π2, the avlue of ddxtan-1cosx1 + sinx is equal to

  • 12

  • 12

  • 1

  • sinx1 + sinx2


B.

12

ddxtan-1cosx1 + sinx= 11 + cosx1 + sinx2ddxcosx1 + sinx= 1 + sinx21 + sin2x + 2sinx + cos2x 1 + sinx- sinx - coscosx1 + sinx2= 12 + 2sinx × - sinx + sin2x + cos2x= 121 +sinx × - 1 + sinx = - 12


Advertisement

 Multiple Choice QuestionsShort Answer Type

470.

If the area of a rectangle is 64 sq unit, find the minimum value possible for its perimeter


Advertisement