The interval in which the function y = x -&nb

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

621.

The function y = 2x - x2

  • increases in (0, 1) but decreases in (1, 2)

  • decreases in (0, 2)

  • increases m (1, 2) but decreases in (0, 1)

  • increases in (0, 2)


Advertisement

622.

The interval in which the function y = x - 2sinx0  x  2π increases throughout is

  • 5π3, 2π

  • 0, π3

  • π3, 5π3

  • 0, π4


C.

π3, 5π3

Given,y = x - 2sinx, 0  x  2πOn dlfferentiating both side w.r.t. 'x', we getdydx = 1 - 2cosxdydx = 01 - 2cosx = 0         cosx = 12     0  x  2π For      x = π3, 5π3, cosx = 12 dydx > 0 for x  π3, 5π3    dydx < 0 for x  0, π3  5π3, 2π y = x - 2sinx increases in interval x π3, 5π3


Advertisement
623.

The points of the curve y = x3 + x - 2 at which its tangent are parallel to the straight line y = 4x - 1 are

  • (2, 7), (- 2, - 11)

  • (0, 2), (21/3, 21/3)

  • (- 21/3, - 21/3), (0, - 4)

  • (1, 0), (- 1, - 4)


624.

The equation of the normal to the curve y = - x + 2 at the point of its intersection with the bisector of the first quadrant is

  • 4x - y + 16 = 0

  • 4x - y = 16

  • 2x - y - 1 = 0

  • 2x - y + 1 = 0


Advertisement
625.

The angle at which the curve y = x2 and the curve x = 53cost, y = 54sint intersect is

  • tan-1241

  • tan-1412

  • - tan-1241

  • 2tan-1412


626.

The maximum value of the function y = 2tanx - tan2x over 0, π2 is

  • 1

  • 3

  • 2


627.

The values of a and b for which the function y = aloge(x ) + bx2 + x, has extremum at the points x1 = 1 and x2 = 2 are

  • a = 23, b = - 16

  • a = - 23, b = - 16

  • a = - 23, b = 16

  • a = - 13, b = - 16


628.

The value of maxima of 1xx is

  • 1ee

  • ee

  • e

  • e1/e


Advertisement
629.

A point particle moves along a straight line such that x = t, where t is time. Then, ratio of acceleration to cube of the velocity is

  • - 1

  • - 0.5

  • - 3

  • - 2


630.

The tangents to curve y = x3 - 2x2 + x - 2 which are parallel to straight line y = x, are

  • x + y = 2 and x - y = 8627

  • x - y = 2 and x - y = 8627

  • x - y = 2 and x + y = 8627

  • x + y = 2 and x + y = 8627


Advertisement