The angle at which the curve y = x2 and the curve x = 53cost

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

621.

The function y = 2x - x2

  • increases in (0, 1) but decreases in (1, 2)

  • decreases in (0, 2)

  • increases m (1, 2) but decreases in (0, 1)

  • increases in (0, 2)


622.

The interval in which the function y = x - 2sinx0  x  2π increases throughout is

  • 5π3, 2π

  • 0, π3

  • π3, 5π3

  • 0, π4


623.

The points of the curve y = x3 + x - 2 at which its tangent are parallel to the straight line y = 4x - 1 are

  • (2, 7), (- 2, - 11)

  • (0, 2), (21/3, 21/3)

  • (- 21/3, - 21/3), (0, - 4)

  • (1, 0), (- 1, - 4)


624.

The equation of the normal to the curve y = - x + 2 at the point of its intersection with the bisector of the first quadrant is

  • 4x - y + 16 = 0

  • 4x - y = 16

  • 2x - y - 1 = 0

  • 2x - y + 1 = 0


Advertisement
Advertisement

625.

The angle at which the curve y = x2 and the curve x = 53cost, y = 54sint intersect is

  • tan-1241

  • tan-1412

  • - tan-1241

  • 2tan-1412


B.

tan-1412

Given, y = x2     ...ix = 53cost,y = 54sint        ...ii

Which is parametnc equation, we change this equation is cartesian equation as follows

cost = 35x, sint = 45y

On squaring and adding both i.e. cos(t) and sin(t), we get

925x2 + 1625y2 = cos2t + sin2t 9x2 + 16y2 = 25             ...iii           cos2θ+ sin2θ = 1

 The intersection points at Eq. (i) and (iii) are (1, 1) and (- 1, 1)

Now, slope of tangent of Eq. (i) at point (1, 1) is

     m1 = dydx=2x m1 = dydx1, 1 = 2

And slope of tangent of Eq (iii), at point (1, 1) is

m2 = dydx = - 916

 Angle at point of intersection of Eqs. (i) and (iii), we get

θ1 = tan-1m1 - m21 + m1m2θ1 = tan-12 + 9161 - 2 × 916 = tan-1412

Similarly, slope of tangent of Eq. (i) at point (- 1, 1)

m1 = dydx- 1, 1 =-2

And slope of tangent of Eq (iii) at point (-1, 1)

m2 = dydx = - 916

 Angle at point of intersection of Eqs. (i) and (iii), we get

θ2 = tan-1- 2 - 9161 - 1816 = tan-1412

 


Advertisement
626.

The maximum value of the function y = 2tanx - tan2x over 0, π2 is

  • 1

  • 3

  • 2


627.

The values of a and b for which the function y = aloge(x ) + bx2 + x, has extremum at the points x1 = 1 and x2 = 2 are

  • a = 23, b = - 16

  • a = - 23, b = - 16

  • a = - 23, b = 16

  • a = - 13, b = - 16


628.

The value of maxima of 1xx is

  • 1ee

  • ee

  • e

  • e1/e


Advertisement
629.

A point particle moves along a straight line such that x = t, where t is time. Then, ratio of acceleration to cube of the velocity is

  • - 1

  • - 0.5

  • - 3

  • - 2


630.

The tangents to curve y = x3 - 2x2 + x - 2 which are parallel to straight line y = x, are

  • x + y = 2 and x - y = 8627

  • x - y = 2 and x - y = 8627

  • x - y = 2 and x + y = 8627

  • x + y = 2 and x + y = 8627


Advertisement