The points at which the tangent to the curve y = x3 + 5 is perpen

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

731.

The interval, inwhich the function f(x) = x2e-x is an increasing function, will be

  • - , 

  • (- 2, 0)

  • 2, 

  • (0, 2)


732.

The minimum distance from the point (4, 2) to the parabola y2 = 8x is

  • 2

  • 22

  • 2

  • 32


733.

A particle moves so that the space described in time t is square root of a quadratic function of t. Then,

  • v  1s

  • acceleration  1s3

  • acceleration  s3

  • None of these


Advertisement

734.

The points at which the tangent to the curve y = x3 + 5 is perpendicular to the line x + 3y = 2 are

  • (6, 1), (- 1, 4)

  • (1, 6), (1, 4)

  • (6, 1), (4, - 1)

  • (1, 6), (- 1, 4)


D.

(1, 6), (- 1, 4)

Given, curve         y = x3 + 5 dydx = 3x2          ...i   Now, equation of tangent to the curve y = x3 + 5and perpendicular to the line x + 3y = 2 is 33x - y + λ = 0     ...iiSo, the slope of Eq. (ii) = 3x2       3 = 3x2 x2 = 1   x = ± 1 y = 1 + 5 = 6 at x = 1 y = - 1 + 5 = 4 at x = - 1Hence, the points are (- 1, 4) and (1, 6). Option (d) (1, 6), (- 1, 4) is correct.


Advertisement
Advertisement
735.

Let f(x) = a - (x - 3)8/9, then maxima of f(x) is

  • 3

  • a - 3

  • a

  • None of these


736.

If the total cost C(x) in rupees associated with the production of x units of an item is given by C (x) = 3x3 - 2x2 + x + 100. Then, the marginal change in cost, when x = 5, is

  • 200

  • 225

  • 206

  • 226


737.

If f'(x) > 0, x  R, f'(3) = 0 and g(x) = ftan2x - 2tanx + 4, 0 < x < π2, then g(x) is increasing in

  • 0, π4

  • π6, π3

  • 0, π3

  • π4, π2


738.

The radius of a cylinder is increasing at the rate of 2 m/s and its height is decreasing at the rate of 3 m/s. When the radius is 3 m and height is 5 m, then the volume of the cylinder would change at the rate of

  • 87π m3/s

  • 33π m3/s

  • 27π m3/s

  • 15π m3/s


Advertisement
739.

The values of a, if f(x) =2ex - ae-x + 2a +1x - 3  increases x, are in

  • [0, )

  • (- , 0]

  • - , 

  • 1, 


740.

A cylindrical tank of radius 2 m is being filled with rice at the rate of 314 cubic m/h. The depth ofthe rice is increasing at the rate of

  • 25 cubic m/h

  • 0.25 cubic m/h

  • 1 cubic m/h

  • 34 cubic m/h


Advertisement