The condition that f(x) = a + bx2 + cx + d has no extreme value,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

771.

The function fx = x3 +ax2 + bx +c, a2  3b has

  • one maximum value

  • one minimum value

  • no extreme value

  • one maximum and one minimum value


772.

The maximum value of log(x)x, 0 < x <  is

  • e

  • 1

  • e - 1


773.

z = tany +ax +y - ax  zxx - a2zyy =?

  • 0

  • 2

  • zx + zy = 0

  • zxzy


774.

The height of the cone of maximum volume inscribed in a sphere of radius R is

  • R3

  • 2R3

  • 4R3

  • 4R3


Advertisement
775.

If the distance s travelled by a particle in time t is given by s = t- 2t + 5, then its acceleration is

  • 0

  • 1

  • 2

  • 3


776.

The length of the sub tangent at any point (x1, y1) on the curve y = 5x is

  • 5x1

  • y15x1

  • loge5

  • 1loge5


777.

If f : R  R is defined by f(x) = 45 forx  R, where y denotes the greatest integer not exceeding y, then fx : x < 71 is equal to

  • 0, 

  • 1, 

  • 4, 

  • 5, 


Advertisement

778.

The condition that f(x) = a + bx2 + cx + d has no extreme value, is

  • b2 > 3ac

  • b2 = 4ac

  • b2 = 3ac

  • b2 < 3ac


D.

b2 < 3ac

Given curve isfx = ax3 + bx2 +cx + dOn differentiating w r t x, we getf'x = 3ax2 +2bx +cFor extremum, f'x = 0 3ax2 + 2bx + c = 0Since, it has no extremu value  b2 - 4ac < 0 2b2 - 4 × 3a × c < 0 4b2 - 12ac < 0 b2 - 3ac < 0 b2 < 3ac


Advertisement
Advertisement
779.

If there is an error of ± 0.04cm in the measurement of the diameter of a sphere, then the approximate percentage error in its volume, when the radius is 10cm, is

  • ± 1.2

  • ± 0 . 06 

  • ± 0 . 006

  • ± 0 . 6


780.

If x+ y2 = 25, then log5[max(3x + 4y)] is

  • 2

  • 3

  • 4

  • 5


Advertisement