Find the area of the region bounded by the line y = 3 x + 2, th

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

31. Find the area of the region enclosed by the parabola y2 = 4 a x and the line y = mx.
176 Views

32.

Find the area bounded by the curve  y = x2 and the line y = x.
OR
Find the area of the region {(x. y): x2 ≤ y ≤ x}.

202 Views

33. Using the method of integration find the area bounded by the curve |x| + |y| = 1.
[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
– x – y = 1].


146 Views

Advertisement

34.

Find the area of the region bounded by the line y = 3 x + 2, the x-axis and the ordinates x = - 1 and x = 1.


The equation of given line is
y = 3 x + 2    ...(1)
Consider the lines
x = -1    ...(2)
and    x = 1    ...(3)
Line (1) meets x-axis where y = 0

therefore  putting y = 0 in (1), we get,
       0 space equals space 3 straight x plus 2 space space space or space space straight x space space equals space minus 2 over 3
therefore line (1) meets x-axis in straight A open parentheses negative 2 over 3 comma space 0 close parentheses
Let line (1) meet lines (2) and (3) in B and D respectively. From B, draw BC ⊥ x-axis and from D, draw DE ⊥ x-axis.
Required area = Area of region ACBA + area of region ADEA
equals space open vertical bar integral subscript negative 1 end subscript superscript fraction numerator negative 2 over denominator 3 end fraction end superscript left parenthesis 3 straight x plus 2 right parenthesis space dx close vertical bar space plus space integral subscript negative 2 over 3 end subscript superscript 1 left parenthesis 3 straight x plus 2 right parenthesis space dx
equals space open vertical bar open square brackets fraction numerator 3 straight x squared over denominator 2 end fraction plus 2 straight x close square brackets subscript negative 1 end subscript superscript negative 2 over 3 end superscript close vertical bar space plus space open square brackets fraction numerator 3 straight x squared over denominator 2 end fraction plus 2 straight x close square brackets subscript negative 2 over 3 end subscript superscript 1
equals space open vertical bar open curly brackets 3 over 2 minus open parentheses negative 2 over 3 close parentheses squared plus 2 space open parentheses negative 2 over 3 close parentheses close curly brackets space minus space open curly brackets 3 over 2 left parenthesis negative 1 right parenthesis squared plus 2 left parenthesis negative 1 right parenthesis close curly brackets close vertical bar
space space space space space space space space space space space space space space space space space
                                                          plus open square brackets 3 over 2 left parenthesis 1 right parenthesis squared plus 2 left parenthesis 1 right parenthesis close square brackets space minus space open square brackets 3 over 2 open parentheses negative 2 over 3 close parentheses squared plus 2 open parentheses negative 2 over 3 close parentheses close square brackets
equals space open vertical bar open parentheses 2 over 3 minus 4 over 3 close parentheses minus open parentheses 3 over 2 minus 2 close parentheses close vertical bar plus open parentheses 3 over 2 plus 2 close parentheses minus open parentheses 2 over 3 minus 4 over 3 close parentheses space equals space open vertical bar negative 2 over 3 plus 1 half close vertical bar plus open parentheses 7 over 2 plus 2 over 3 close parentheses
equals space open vertical bar negative 1 over 6 close vertical bar plus 25 over 6 space equals space 1 over 6 plus 25 over 6 equals space 26 over 6 equals space 13 over 3 space sq. space units.

112 Views

Advertisement
Advertisement
35. Find the area of the region included between the parabola straight y space equals 3 over 4 straight x squared space and space the space line space 3 straight x space minus space 2 straight y space plus space 12 space equals space 0
127 Views

36. Find the area bounded by the parabola x2 = 4 y and the straight line x = 4 y - 2.
201 Views

37. Find the area of the region included between the parabola y2 = x and the line x + y = 2.
1184 Views

38.

Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and the x-axis.
OR
Draw the rough sketch and find the area of the region:
{(x, y): x2 < y < x + 2}

518 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

39.

Draw a rough sketch of the curves y = sin x and y = cos x as x varies from 0 to straight pi over 2 and find the area of the region enclosed by them and the x-axis.

282 Views

40.

Find the area bounded by the curve y = cos x between x = 0 and x = 2 straight pi.

136 Views

Advertisement