Find the area of the region bounded by two parabola 4 y = x2 a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

51. Find the area of the region enclosed between the two circles x2 + y2 = 4 and (x - 2)2 + y2 = 4.
892 Views

52. Find the area of the region enclosed between the two circles  x2 + y2 = 1 and (x - 1)2 + y2 = 1. 
565 Views

53. Find the area of the region enclosed between the two circles x2 + y2 = 1 and open parentheses straight x minus 1 half close parentheses squared plus straight y squared space equals space 1.
156 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

54. Find the area of the region bounded by two parabola 4 y = x2 and 4 x = y2


The equations of curves are
                          straight y squared space equals space 4 straight x                                             ...(1)
and                    straight x squared space equals space 4 straight y                                             ...(2)
From (2),      straight y space equals space straight x squared over 4                                                  ...(3)
             Putting this value of y in (1),
                     straight x to the power of 4 over 16 space equals space 4 space straight x space space space space or space space space straight x to the power of 4 space equals space 64 space straight x
or          straight x left parenthesis straight x cubed minus 64 right parenthesis space equals space 0
therefore space space space straight x space equals space 0 comma space space 4
therefore space space space from space left parenthesis 3 right parenthesis comma space space space straight y space equals space 0 comma space space 4
because space space space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space intersect space in space straight O left parenthesis 0 comma space 0 right parenthesis comma space straight P space left parenthesis 4 comma space 4 right parenthesis.





                From P, draw PM perpendicular x-axis. 
                Required area = Area OAPB
                                       = Area OBPM - area OAPM
                      equals space integral subscript 0 superscript 4 4 square root of straight x space dx space space minus integral subscript 0 superscript 4 straight x squared over 4 dx space equals space 2 integral subscript 0 superscript 4 straight x to the power of 1 half end exponent dx minus 1 fourth integral subscript 0 superscript 4 straight x squared space dx space equals space 2 space open square brackets fraction numerator straight x to the power of begin display style 3 over 2 end style end exponent over denominator begin display style 3 over 2 end style end fraction close square brackets subscript 0 superscript 4 space minus space 1 fourth open square brackets straight x cubed over 3 close square brackets subscript 0 superscript 4
equals space 2 space cross times 2 over 3 open square brackets straight x to the power of 3 over 2 end exponent close square brackets subscript 0 superscript 4 space minus space 1 fourth cross times 1 third open square brackets straight x cubed close square brackets subscript 0 superscript 4 space equals space 4 over 3 open square brackets left parenthesis 4 right parenthesis to the power of 3 over 2 end exponent minus 0 close square brackets minus 1 over 12 left square bracket left parenthesis 4 right parenthesis cubed minus 0 right square bracket
equals space 4 over 3 cross times 8 minus 1 over 12 cross times 64 space equals space 32 over 3 minus 16 over 3 equals space 16 over 3 space sq. space units. space

136 Views

Advertisement
Advertisement

 Multiple Choice QuestionsLong Answer Type

55. Find the area included between the two curves y2 = 9x and ,x2 = 9y. Also draw the rough sketch.
398 Views

 Multiple Choice QuestionsShort Answer Type

56.

Calculate the area of the region bounded by the y = x2 and x = y2.

100 Views

 Multiple Choice QuestionsLong Answer Type

57. Draw a graph of y2 = 16 x and x2 = 16y, and evaluate the area between them.
192 Views

58. Find the area of the region included between the parabolas y2 = 4 a x and x2 = 4 a y, a > 0.    
185 Views

Advertisement
59. Draw the rough sketch of y2 = x + 1 and y2 = - x + 1 and determine the area enclosed by the two curves.
345 Views

60. Find the area of the region
{(x, y): 0 ≤ y ≤ x2 + 1 , 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2}.
345 Views

Advertisement