Draw a graph of y2 = 16 x and x2 = 16y, and evaluate the area

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

51. Find the area of the region enclosed between the two circles x2 + y2 = 4 and (x - 2)2 + y2 = 4.
892 Views

52. Find the area of the region enclosed between the two circles  x2 + y2 = 1 and (x - 1)2 + y2 = 1. 
565 Views

53. Find the area of the region enclosed between the two circles x2 + y2 = 1 and open parentheses straight x minus 1 half close parentheses squared plus straight y squared space equals space 1.
156 Views

 Multiple Choice QuestionsShort Answer Type

54. Find the area of the region bounded by two parabola 4 y = x2 and 4 x = y2
136 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

55. Find the area included between the two curves y2 = 9x and ,x2 = 9y. Also draw the rough sketch.
398 Views

 Multiple Choice QuestionsShort Answer Type

56.

Calculate the area of the region bounded by the y = x2 and x = y2.

100 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

57. Draw a graph of y2 = 16 x and x2 = 16y, and evaluate the area between them.


The equations of curves are
                                            straight y squared space equals space 16 space straight x                        ...(1)
and                                     straight x squared space equals 16 space straight y                          ...(2)
From (2),                   straight y space equals space straight x squared over 16                                     ...(3)
Putting this value of y in (1), we get,
                          straight x to the power of 4 over 256 space equals space 16 space straight x space space space space or space space space straight x to the power of 4 space equals space 4096
or              straight x space left parenthesis straight x cubed minus 4096 right parenthesis space equals space 0
therefore space space space space space space space space space space space straight x space equals space 0 comma space space space 16
therefore space space space from space space left parenthesis 3 right parenthesis comma space space straight y space equals 0 comma space space 16
therefore space space space space curves space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space intersect space in
         O(0, 0),  P(16, 16)
From P, draw PM perpendicular space straight x minus axis.


Required area = Area OAPB = Area OBPM - area OAPM
                       equals space integral subscript 0 superscript 16 square root of 16 space straight x end root dx space space minus integral subscript 0 superscript 16 straight x squared over 16 dx space equals space 4 integral subscript 0 superscript 16 straight x to the power of 1 half end exponent dx space minus space 1 over 16 integral subscript 0 superscript 16 straight x squared space dx
equals space 4 open square brackets fraction numerator straight x to the power of begin display style 3 over 2 end style end exponent over denominator begin display style 3 over 2 end style end fraction close square brackets subscript 0 superscript 16 space minus space 1 over 16 open square brackets straight x cubed over 3 close square brackets subscript 0 superscript 16
equals space 8 over 3 open square brackets left parenthesis 16 right parenthesis to the power of 3 over 2 end exponent minus 0 close square brackets minus 1 over 48 left square bracket left parenthesis 16 right parenthesis cubed minus 0 right square bracket
equals space 8 over 3 cross times 64 minus 1 over 48 cross times 4096 space equals space 512 over 3 minus 256 over 3 space equals space 256 over 3 space sq. space units. space
192 Views

Advertisement
58. Find the area of the region included between the parabolas y2 = 4 a x and x2 = 4 a y, a > 0.    
185 Views

Advertisement
59. Draw the rough sketch of y2 = x + 1 and y2 = - x + 1 and determine the area enclosed by the two curves.
345 Views

60. Find the area of the region
{(x, y): 0 ≤ y ≤ x2 + 1 , 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2}.
345 Views

Advertisement