Find the area of the region included between the parabolas y2 =

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

51. Find the area of the region enclosed between the two circles x2 + y2 = 4 and (x - 2)2 + y2 = 4.
892 Views

52. Find the area of the region enclosed between the two circles  x2 + y2 = 1 and (x - 1)2 + y2 = 1. 
565 Views

53. Find the area of the region enclosed between the two circles x2 + y2 = 1 and open parentheses straight x minus 1 half close parentheses squared plus straight y squared space equals space 1.
156 Views

 Multiple Choice QuestionsShort Answer Type

54. Find the area of the region bounded by two parabola 4 y = x2 and 4 x = y2
136 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

55. Find the area included between the two curves y2 = 9x and ,x2 = 9y. Also draw the rough sketch.
398 Views

 Multiple Choice QuestionsShort Answer Type

56.

Calculate the area of the region bounded by the y = x2 and x = y2.

100 Views

 Multiple Choice QuestionsLong Answer Type

57. Draw a graph of y2 = 16 x and x2 = 16y, and evaluate the area between them.
192 Views

Advertisement

58. Find the area of the region included between the parabolas y2 = 4 a x and x2 = 4 a y, a > 0.    


The equations of curves are
                   straight y squared space equals space 4 space straight a space straight x                   ...(1)
and             straight x squared space equals 4 space straight a space straight y                   ...(2)
From (2), straight y equals fraction numerator straight x squared over denominator 4 space straight a end fraction                          ...(3)
Putting this value of y in (1),
fraction numerator straight x to the power of 4 over denominator 16 space straight a squared end fraction space equals space 4 space straight a space straight x comma space space or space space space straight x to the power of 4 space equals space 64 space straight a cubed space straight x
or                straight x left parenthesis straight x cubed minus 64 straight a cubed right parenthesis space equals 0
∴ x = 0, 4 a
∴ from (3), y = 0, 4 a
∴ curves (1) and (2) intersect in O (0, 0), P (4 a, 4 a).
From P. draw PM ⊥ x-axis.
Required area = Area OAPB
= Area OBPM - area OAPM
equals space integral subscript straight a superscript 4 straight a end superscript square root of 4 space straight a space straight x end root space dx space minus space integral subscript 0 superscript 4 straight a end superscript fraction numerator straight x squared over denominator 4 straight a end fraction dx space equals space 2 square root of straight a integral subscript 0 superscript 4 space straight a space end superscript straight x to the power of 1 half end exponent dx space minus space fraction numerator 1 over denominator 4 space straight a end fraction integral subscript 0 superscript 4 space straight a end superscript straight x squared space dx
 equals space 2 square root of straight a open square brackets fraction numerator straight x to the power of begin display style 3 over 2 end style end exponent over denominator begin display style 3 over 2 end style end fraction close square brackets subscript 0 superscript 4 straight a end superscript space minus space fraction numerator 1 over denominator 4 straight a end fraction open square brackets straight x cubed over 3 close square brackets subscript 0 superscript 4 straight a end superscript
equals space 2 square root of straight a cross times 2 over 3 open square brackets straight x to the power of 3 over 2 end exponent close square brackets subscript 0 superscript 4 straight a end superscript space minus space fraction numerator 1 over denominator space 4 straight a end fraction cross times 1 third open square brackets straight x cubed close square brackets subscript 0 superscript 4 straight a end superscript
equals space fraction numerator 4 square root of straight a over denominator 3 end fraction open square brackets left parenthesis 4 space straight a right parenthesis to the power of 3 over 2 end exponent minus 0 close square brackets space minus space fraction numerator 1 over denominator 12 space straight a end fraction open square brackets left parenthesis 4 space straight a right parenthesis cubed space minus space 0 close square brackets
equals space fraction numerator 4 square root of straight a over denominator 3 end fraction cross times 8 straight a to the power of 3 over 2 end exponent minus fraction numerator 1 over denominator 12 space straight a end fraction cross times 64 space straight a cubed space equals space 32 over 3 straight a squared minus 16 over 3 straight a squared space equals space 16 over 3 straight a squared space sq. space units.

185 Views

Advertisement
Advertisement
59. Draw the rough sketch of y2 = x + 1 and y2 = - x + 1 and determine the area enclosed by the two curves.
345 Views

60. Find the area of the region
{(x, y): 0 ≤ y ≤ x2 + 1 , 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2}.
345 Views

Advertisement