Find the area lying above x-axis and included between the circle

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

61.

Find the area of the region {(x, y): x2 + y2 ≤ 1 ≤ x + y}.

105 Views

 Multiple Choice QuestionsLong Answer Type

62.

Find the area of the region bounded by the circle x2 + y2 = 1 and x + y = 1. Also draw a rough sketch.

151 Views

63.

Find the area of the region {(x, y): x2 ≤ y ≤ |x|}.
Or
Find the area of the region bounded by the parabola y = x2 and y = |x|.

178 Views

64. Draw the rough sketch and find the area of the region:
{(x, y) : y2 ≤ 8 x, x2 + x2 ≤ 9} 
149 Views

Advertisement
65. Find the area of the region {(x, y): y2 ≤ 4 x, 4x2 + 4 y2 ≤ 9}
102 Views

Advertisement

66. Find the area lying above x-axis and included between the circle x2 + y2 = 8 x and inside of the parabola y2 = 4 x.


The equation of circle is
x2 + y2 = 8 x    ...(1)

The equation of parabola is
y2 = 4 x    ...(2)
(1) can be written as
(x2 - 8 x) + y2 = 0 or (x2 - 8 x + 16) + y2 = 16
or (x - 4)2 + y2 = (4)2    ...(3)
which is a circle with centre C(4, 0) and radius = 4.
From (1) and (2), we get,
x2 + 4 x = 8 x or x2 - 4 x = 0 ⇒ x(x - 4) = 0
∴ x = 0, 4
∴ from (2), y =0, 4
∴ points of intersection of circle (1) and parabola (2) and 0(0, 0) and P(4, 4), above the x-axis.
Required area =  area of region OPQCO
                      = (area of region OCPO) + (area of region PCQP)
                       equals space integral subscript 0 superscript 4 straight y space dx plus integral subscript 4 superscript 8 straight y space dx
equals space 2 integral subscript 0 superscript 4 square root of straight x space dx space plus space integral subscript 4 superscript 8 square root of left parenthesis 4 right parenthesis squared minus left parenthesis straight x minus 4 right parenthesis squared end root space dx space space space space space space space space space space space left square bracket because space of space left parenthesis 2 right parenthesis comma space left parenthesis 3 right parenthesis right square bracket
equals space 2 open square brackets fraction numerator straight x to the power of begin display style 3 over 2 end style end exponent over denominator begin display style 3 over 2 end style end fraction close square brackets subscript 0 superscript 4 space plus space open square brackets fraction numerator left parenthesis straight x minus 4 right parenthesis over denominator 2 end fraction square root of left parenthesis 4 right parenthesis squared minus left parenthesis straight x minus 4 right parenthesis squared end root plus fraction numerator left parenthesis 4 right parenthesis squared over denominator 2 end fraction. sin to the power of negative 1 end exponent fraction numerator straight x minus 4 over denominator 4 end fraction close square brackets subscript 4 superscript 8
space equals space 4 over 3 open square brackets straight x to the power of 3 over 2 end exponent close square brackets subscript 0 superscript 4 plus open square brackets open parentheses fraction numerator 8 minus 4 over denominator 2 end fraction close parentheses square root of 16 minus 16 end root plus 8 space sin to the power of negative 1 end exponent left parenthesis 1 right parenthesis close square brackets space minus space open square brackets 0 plus 8 space sin to the power of negative 1 end exponent 0 close square brackets
equals space 4 over 3 open square brackets left parenthesis 4 right parenthesis to the power of 3 over 2 end exponent minus 0 close square brackets plus open parentheses 0 plus 8 cross times straight pi over 2 close parentheses minus left parenthesis 0 plus 0 right parenthesis
equals space 4 over 3 cross times 8 plus 4 straight pi equals space 32 over 3 plus 4 straight pi space equals space 4 over 3 left parenthesis 8 plus 3 straight pi right parenthesis space sq. space units. space

 
975 Views

Advertisement
67. Calculate the area enclosed in the region:
open curly brackets left parenthesis straight x comma space straight y right parenthesis space semicolon space space straight x squared plus straight y squared space less or equal than space 1 space less than space straight x plus 1 half straight y close curly brackets
116 Views

68. Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x. 

1016 Views

Advertisement
69. Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola y2= 4 x. 
650 Views

70. Draw a rough sketch of the region {(x, y): y2 ≤ 5 x, 5 x2 + 5 y2 ≤ 36} and find the area enclosed by the region using method of integration.
167 Views

Advertisement