Find the area of the circle x2 + y2 = 16 which is exterior to

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

61.

Find the area of the region {(x, y): x2 + y2 ≤ 1 ≤ x + y}.

105 Views

 Multiple Choice QuestionsLong Answer Type

62.

Find the area of the region bounded by the circle x2 + y2 = 1 and x + y = 1. Also draw a rough sketch.

151 Views

63.

Find the area of the region {(x, y): x2 ≤ y ≤ |x|}.
Or
Find the area of the region bounded by the parabola y = x2 and y = |x|.

178 Views

64. Draw the rough sketch and find the area of the region:
{(x, y) : y2 ≤ 8 x, x2 + x2 ≤ 9} 
149 Views

Advertisement
65. Find the area of the region {(x, y): y2 ≤ 4 x, 4x2 + 4 y2 ≤ 9}
102 Views

66. Find the area lying above x-axis and included between the circle x2 + y2 = 8 x and inside of the parabola y2 = 4 x.
975 Views

67. Calculate the area enclosed in the region:
open curly brackets left parenthesis straight x comma space straight y right parenthesis space semicolon space space straight x squared plus straight y squared space less or equal than space 1 space less than space straight x plus 1 half straight y close curly brackets
116 Views

Advertisement

68. Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x. 


The equation of circle is
          straight x squared plus straight y squared space equals 16                    ...(1)
The equation of parabola is
              straight y squared space equals 6 straight x                         ...(2)
From (1) and (2),
               straight x squared plus 6 straight x space equals space 16
or        straight x squared plus 6 straight x minus 16 space equals space 0
therefore space space space left parenthesis straight x plus 8 right parenthesis space left parenthesis straight x minus 2 right parenthesis space equals space 0
rightwards double arrow                        straight x equals negative 8 comma space 2


Rejecting x = -8 as parabola lies in 1st or 4th quadrant , we get x =2

When          straight x equals 2 comma space space straight y equals square root of 12 space equals space 2 square root of 3

therefore space space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis space intersect space in space straight P left parenthesis 2 comma space 2 square root of 3 right parenthesis

Required Area = Area of the circle - area of circle interior to the parabola   
equals 16 straight pi minus 2 integral subscript 0 superscript 2 straight y space dx space minus space 2 integral subscript 2 superscript 4 straight y space dx space equals space 16 straight pi minus 2 integral subscript 0 superscript 2 square root of 6 straight x to the power of 1 half end exponent dx minus 2 integral subscript 0 superscript 4 square root of 16 minus straight x squared end root dx
equals 16 straight pi minus 2 square root of 6 open square brackets 2 over 3 straight x to the power of 3 over 2 end exponent close square brackets subscript 0 superscript 2 minus space 2 open square brackets straight x over 2 square root of 16 minus straight x squared end root plus 16 over 2 sin to the power of negative 1 end exponent straight x over 4 close square brackets subscript 2 superscript 4
equals space 16 straight pi minus 4 over 3 square root of 6. space 2 square root of 2 minus 2 open square brackets 4 over 2 square root of 16 minus 16 end root plus 16 over 2 sin to the power of negative 1 end exponent 1 minus 2 over 2 square root of 16 minus 4 end root minus 16 over 2 sin to the power of negative 1 end exponent 2 over 4 close square brackets
equals 16 straight pi minus fraction numerator 16 over denominator square root of 3 end fraction minus 16. space straight pi over 2 plus 4 square root of 3 plus fraction numerator 8 straight pi over denominator 3 end fraction equals negative fraction numerator 4 over denominator square root of 3 end fraction plus fraction numerator 32 space straight pi over denominator 3 end fraction space equals 4 over 3 left parenthesis 8 straight pi minus square root of 3 right parenthesis

1016 Views

Advertisement
Advertisement
69. Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola y2= 4 x. 
650 Views

70. Draw a rough sketch of the region {(x, y): y2 ≤ 5 x, 5 x2 + 5 y2 ≤ 36} and find the area enclosed by the region using method of integration.
167 Views

Advertisement