Draw a rough sketch of the region {(x, y): y2 ≤ 5 x, 5 x2 +

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

61.

Find the area of the region {(x, y): x2 + y2 ≤ 1 ≤ x + y}.

105 Views

 Multiple Choice QuestionsLong Answer Type

62.

Find the area of the region bounded by the circle x2 + y2 = 1 and x + y = 1. Also draw a rough sketch.

151 Views

63.

Find the area of the region {(x, y): x2 ≤ y ≤ |x|}.
Or
Find the area of the region bounded by the parabola y = x2 and y = |x|.

178 Views

64. Draw the rough sketch and find the area of the region:
{(x, y) : y2 ≤ 8 x, x2 + x2 ≤ 9} 
149 Views

Advertisement
65. Find the area of the region {(x, y): y2 ≤ 4 x, 4x2 + 4 y2 ≤ 9}
102 Views

66. Find the area lying above x-axis and included between the circle x2 + y2 = 8 x and inside of the parabola y2 = 4 x.
975 Views

67. Calculate the area enclosed in the region:
open curly brackets left parenthesis straight x comma space straight y right parenthesis space semicolon space space straight x squared plus straight y squared space less or equal than space 1 space less than space straight x plus 1 half straight y close curly brackets
116 Views

68. Find the area of the circle x2 + y2 = 16 which is exterior to the parabola y2 = 6x. 

1016 Views

Advertisement
69. Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola y2= 4 x. 
650 Views

Advertisement

70. Draw a rough sketch of the region {(x, y): y2 ≤ 5 x, 5 x2 + 5 y2 ≤ 36} and find the area enclosed by the region using method of integration.


Given region is
                open curly brackets left parenthesis straight x comma space straight y right parenthesis space colon space straight y squared less or equal than 5 straight x comma space 5 straight x squared plus 5 straight y squared space less or equal than 36 close curly brackets
Consider the equations
                   straight y squared space equals space 5 straight x                        ...(1)
                 5 straight x squared plus 5 straight y squared space equals space 36
   i.e.           straight x squared plus straight y squared space equals space 36 over 5               ...(2)
From (1) and (2), we get,
                        5 straight x squared plus 25 straight x space equals space 36 space space space or space space 5 straight x squared plus 25 straight x minus 36 space equals space 0
therefore space space space straight x space equals space fraction numerator negative 25 plus-or-minus square root of 625 plus 720 end root over denominator 10 end fraction equals space fraction numerator negative 25 plus-or-minus square root of 1345 over denominator 10 end fraction
Rejecting negative value of x, we get,
straight x equals fraction numerator negative 25 plus square root of 1345 over denominator 10 end fraction equals straight a space left parenthesis say right parenthesis


which gives the abscissa of the points of intersection P and Q.
Required area = Area of shaded region = 2 (area of region OAPO)
= 2[area of region OMPO + area of region MAPM]
                       equals space 2 open square brackets integral subscript 0 superscript straight a square root of 5 square root of straight x dx plus integral subscript straight a superscript 6 divided by square root of 5 end superscript square root of 36 over 5 minus straight x squared end root close square brackets dx
                     equals space 2 square root of 5 open square brackets fraction numerator straight x to the power of begin display style 3 over 2 end style end exponent over denominator begin display style 3 over 2 end style end fraction close square brackets subscript 0 superscript straight a plus 2 open square brackets fraction numerator straight x square root of begin display style 36 over 5 end style minus straight x squared end root over denominator 2 end fraction plus fraction numerator begin display style 36 over 5 end style over denominator 2 end fraction sin to the power of negative 1 end exponent open parentheses fraction numerator straight x over denominator 6 divided by square root of 5 end fraction close parentheses close square brackets subscript straight a superscript fraction numerator 6 over denominator square root of 5 end fraction end superscript
equals space fraction numerator 4 square root of 5 over denominator 3 end fraction left parenthesis straight a to the power of 3 over 2 end exponent minus 0 right parenthesis space space plus open square brackets open parentheses 0 plus 36 over 5 sin to the power of negative 1 end exponent 1 close parentheses space minus space straight a square root of 36 over 5 minus straight a squared end root sin to the power of negative 1 end exponent open parentheses fraction numerator straight a square root of 5 over denominator 6 end fraction close parentheses close square brackets
equals space fraction numerator 4 square root of 5 over denominator 3 end fraction straight a to the power of 3 divided by 2 end exponent plus 36 over 10 straight pi minus straight a square root of 36 over 5 minus straight a squared end root minus 36 over 5 sin to the power of negative 1 end exponent open parentheses fraction numerator straight a square root of 5 over denominator 6 end fraction close parentheses
where straight a equals fraction numerator negative 25 plus square root of 1345 over denominator 10 end fraction

167 Views

Advertisement
Advertisement