Using integration, find the area of the region bounded by the tr

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

Area lying between the curves y2 = 4x and y = 2x  is

  • 2 over 3
  • 1 third
  • 1 fourth
  • 1 fourth
196 Views

82. Area bounded by the curve y = x3  the x-axis and the ordinates x - 2 and a = 1 is
  • -9

  • fraction numerator negative 15 over denominator 4 end fraction
  • 15 over 4
  • 15 over 4
110 Views

83. The area bounded by the curve y = x |x|, x-axis and the ordinates x = - 1 and x = 1 is given by
  • 0

  • 1 third
  • 2 over 3
  • 2 over 3
122 Views

84. The area of the circle x +y =16 exterior to the parabola y2 = 6x is
  • 4 over 3 left parenthesis 4 straight pi minus square root of 3 right parenthesis
  • 4 over 3 left parenthesis 4 straight pi plus square root of 3 right parenthesis
  • 4 over 3 left parenthesis 8 straight pi minus square root of 3 right parenthesis
  • 4 over 3 left parenthesis 8 straight pi minus square root of 3 right parenthesis
196 Views

Advertisement
85.

The area bounded by the x-axis, y = cosx and y = sin x when 0 less or equal than straight x less or equal than straight pi over 2

  • 2 left parenthesis square root of 2 minus 1 right parenthesis
  • square root of 2 minus 1
  • square root of 2 plus 1
  • square root of 2 plus 1
162 Views

 Multiple Choice QuestionsLong Answer Type

86. Prove that the curves y2 = 4x and x2 = 4y divide the area of the square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.
640 Views

87.

Using the method of integration, find the area of the triangular region whose vertices are (2, -2), (4, 3) and (1, 2).

1133 Views

88.

Sketch the region bounded by the curves straight y equals square root of 5 minus straight x squared end root space and space straight y space equals open vertical bar straight x minus 1 close vertical bar and find its area using integration. 

600 Views

Advertisement
Advertisement

89.

Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 2), (1, 5) and (3, 4).


Consider the vertices, A(-1, 2), B(1, 5) and C(3, 4).
Let us find the equation of the sides of the triangle increment ABC.
Thus, the equation of AB is:

fraction numerator straight y minus 5 over denominator 5 minus 2 end fraction space equals space fraction numerator straight x minus 1 over denominator 1 plus 1 end fraction
rightwards double arrow 3 straight x minus 2 straight y plus 7 space equals space 0
Similarly comma space the space equation space of space BC space is colon
fraction numerator straight y minus 4 over denominator 4 minus 5 end fraction equals fraction numerator straight x minus 3 over denominator 3 minus 1 end fraction
rightwards double arrow straight x plus 2 straight y minus 11 space equals 0
Also comma space the space equation space of space CA space is colon
fraction numerator straight y minus 4 over denominator 4 minus 2 end fraction space equals fraction numerator straight x minus 3 over denominator 3 plus 1 end fraction
rightwards double arrow straight x minus 2 straight y plus 5 space equals 0


Now the area of increment ABC = Area of increment ADB + Area of increment BDC

therefore space Area space of space increment ADB space equals space integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 3 straight x plus 7 over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx

Similarly comma space Area space of space increment BDC equals space integral subscript 1 superscript 3 open square brackets fraction numerator 11 minus straight x over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
Thus comma space Area space of space increment ADB space plus space Area space of space increment BDC
equals space integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 3 straight x plus 7 over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx plus integral subscript 1 superscript 3 open square brackets fraction numerator 11 minus straight x over denominator 2 end fraction minus fraction numerator straight x plus 5 over denominator 2 end fraction close square brackets dx
equals integral subscript negative 1 end subscript superscript 1 open square brackets fraction numerator 2 straight x plus 2 over denominator 2 end fraction close square brackets dx plus integral subscript 1 superscript 3 open square brackets fraction numerator 6 minus 2 straight x over denominator 2 end fraction close square brackets dx
equals integral subscript negative 1 end subscript superscript 1 open square brackets straight x plus 1 close square brackets dx plus integral subscript 1 superscript 3 open square brackets 3 minus straight x close square brackets dx
equals open square brackets straight x squared over 2 plus straight x close square brackets subscript negative 1 end subscript superscript 1 space plus space open square brackets 3 straight x minus straight x squared over 2 close square brackets subscript 1 superscript 3
equals 0 plus 2 plus 9 minus 9 over 2 minus 3 plus 1 half
equals 2 plus 9 over 2 minus 5 over 2
equals 4 space square space units

363 Views

Advertisement
90.

Using integration, find the area bounded by the curve x2 = 4y and the line x = 4y – 2.

350 Views

Advertisement