In figure, diagonals AC and BD of quadrilateral ABCD intersect a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

31. In the figure, ABCD is a parallelogram. P is a point on AB produced and DN ⊥ AB. If AB = 8 cm and DN = 3 cm. Find the area of ΔCPD.


112 Views

32. ABCD is a parallelogram in which BC is produced to E such that CE = BC (see figure). AE intersects CD at F. Prove that ar(ΔBFC)  equals 1 fourth space ar left parenthesis ABCD right parenthesis.


960 Views

33. In the figure, AB || CD. E and F are the points on the sides CD and AB respectively. If ar(ΔABE) = ar(ΔDCF), then prove that AB = DC.


384 Views

34. In figure, E is any point on median AD of a ΔABC. Show that ar(ΔABE) = ar(ΔACE).


134 Views

Advertisement
35. In a triangle ABC, E is the midpoint of median AD. Show that a r left parenthesis increment B E D right parenthesis space equals 1 fourth a r left parenthesis increment A B C right parenthesis
125 Views

36. Show that the diagonals of a parallelogram divide it into four triangles of equal area.   
473 Views

37. In figure, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O. Show that ar(AABC) = ar(ΔABD).




187 Views

 Multiple Choice QuestionsLong Answer Type

38.

D, E and F are respectively the midpoints of the sides BC, CA and AB of a ΔABC. Show that:

(i) BDEF is a parallelogram

left parenthesis ii right parenthesis space ar left parenthesis increment DEF right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis square space space BDEF right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis

863 Views

Advertisement
Advertisement

39.

In figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that:

(i) ar(ΔDOC) = ar(ΔAOB)
(ii) ar(ΔDCB) = ar(ΔACB)
(iii) DA || CB or ABCD is a parallelogram.
[Hint. From D and B, draw perpendiculars to AC.]


Given: Diagonals AC and BD of a quadrilateral ABCD intersect at O such that OB = OD. To Prove: If AB = CD, then

(i) ar(ΔDOC) = ar(ΔAOB)
(ii) ar(ΔDCB) = ar(ΔACB)
(iii) DA || CB or ABCD is a parallelogram.


Given: Diagonals AC and BD of a quadrilateral ABCD intersect at O suc

Construction: Draw DE ⊥ AC and BF ⊥ AC.
Proof: (iii) In ΔADB,
∵    AO is a median
∴ ar(ΔAOD) = ar(ΔAOB)    ...(1)
∵    A median of a triangle divides it into two triangles of equal areas
In ΔCBD,
∵    CO is a median.
ar(ΔCOD) = ar(ΔCOB)    ...(2)
∵    A median of a triangle divides it into two triangles of equal areas
Adding (1) and (2), we get ar(ΔAOD) + ar(ΔCOD)
= ar(ΔAOB) + ar(ΔCOB)
⇒ ar(ΔACD) = ar(ΔACB)

rightwards double arrow space space space space space fraction numerator left parenthesis AC right parenthesis left parenthesis DE right parenthesis over denominator 2 end fraction equals fraction numerator left parenthesis AC right parenthesis left parenthesis BF right parenthesis over denominator 2 end fraction
space space space space space space space space space space space space space space space space because space space Area space of space straight a space triangle
space space space space space space space space space space space space space space space space space equals space fraction numerator Base space straight x space Corresponding space altitude over denominator 2 end fraction
rightwards double arrow space space space space DE plus BF space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis

In right Δs DEC and BFA,
Hyp. DC = Hyp. BA    | given
DE = BF    | From (3)
∴ ΔDEC ⊥ ABFA    | R.H.S. Rule
∴ ∠DCE = ∠BAF    | C.P.C.T.
But these angles form a pair of equal alternate interior angles.
∴ DC || AB    ...(4)
∵ DC = AB and DC || AB ∴ □ABCD is a parallelogram.
∵ A quadrilateral is a parallelogram if a pair of opposite sides are parallel and equal DA || CB
| ∵ Opposite sides of a || gm are parallel (i) ∵ ABCD is a parallelogram
∴ OC = OA    ...(5)
Diagonals of a parallelogram bisect each other

ar left parenthesis increment DOC right parenthesis equals fraction numerator OC cross times DE over denominator 2 end fraction
ar left parenthesis increment AOB right parenthesis equals fraction numerator OA cross times BF over denominator 2 end fraction

∵ DE = BF    | From (3)

and    OC = OA    | From (5)

∴ ar(ΔDOC) = ar(ΔAOB).

(ii) From (i),
ar(ΔDOC) = ar(ΔAOB)
Δ ar(ΔDOC) + ar(ΔOCB)
= ar(ΔAOB) + ar(ΔOCB)
| Adding equal areas on both sides ⇒ ar(ΔDCB) = ar(ΔACB).

375 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

40. D and E are points on sides AB and AC respectively of ΔABC such that ar(ΔDBC) = ar(ΔEBC). Prove that DE || BC.
92 Views

Advertisement