In figure, ABC and BDE are two equilateral triangles such that D

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

71. The diagonals of a quadrilateral ABCD intersect at O (see figure). Prove that if BO = OD, then ar(ΔABC) = ar(ΔADC).


121 Views

72. In the figure, the vertex A of ΔABC is joined to a point D on the side BC. The mid-point of AD is straight E space Prove space that space ar space left parenthesis increment BEC right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis.


99 Views

73. Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
3123 Views

74.

In figure, D and E are two points on BC such that BD = DE = EC. Show that ar(ΔABD) = ar(ΔADE) = ar(ΔAEC). [CBSE 2012 (March)]

Can you now answer the question that you have left in the ‘Introduction’, of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?



[Remark: Note that by taking BD = DE = EC, the triangle ABC is divided into three triangles ABD, ADE and AEC of equal areas. In the same way, by dividing BC into n equal parts and joining the points of division so obtained to the opposite vertex of BC, you can divide ΔABC into n triangles of equal areas.] 

351 Views

Advertisement
75. In figure, ABCD, DCFE and ABFE are parallelograms. Show that ar(ΔADE) = ar(ΔBCF).


355 Views

76. In figure, ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that ar(ΔBPC) = ar(ΔDPQ).



[Hint. Join AC.]
2354 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

77. In figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that: 



left parenthesis straight i right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis
left parenthesis ii right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 half ar space left parenthesis increment BAE right parenthesis
left parenthesis iii right parenthesis space ar left parenthesis increment ABC right parenthesis equals space 2 ar left parenthesis increment BEC right parenthesis
left parenthesis iv right parenthesis space ar left parenthesis increment BFE right parenthesis equals 2 ar left parenthesis increment AFD right parenthesis
left parenthesis straight v right parenthesis space ar left parenthesis increment BFE right parenthesis equals 2 ar left parenthesis increment FED right parenthesis
left parenthesis vi right parenthesis ar left parenthesis increment FED right parenthesis equals 1 over 8 ar left parenthesis AFC right parenthesis.


Given: ABC and BDE are two equilateral triangles such that D is the mid-point of BC. AE intersects BC at F.

To space Prove colon space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis

Construction: Join EC and AD.


Given: ABC and BDE are two equilateral triangles such that D is the m

Proof: ∵ ΔABC is an equilateral triangle. ∴ ∠ABC = ∠BCA = ∠CAB = 60° ...(1)
∵    ΔBDE is an equilateral triangle.
∴ ∠BDE = ∠DEB = ∠EBD = 60° ...(2) ∠ABE + ∠BED
= ∠ABD + ∠EBD + ∠BED = 60°+ 60°+ 60°= 180°
∴ AB || DE    ...(3)
∵    Sum of consecutive interior angles on
the same side of a transversal is 180° ∠EBA + ∠BAC
= ∠EBD + ∠DBA + ∠BAC = 60° + 60° + 60° = 180°
∴ AC || BE    ...(4)
∵    Sum of consecutive interior angles on the same side of the transversal is 180°
∵    ΔCBA and ΔCEA are on the same base AC and between the same parallels.
∴ ar(ΔCBA) = ar(ΔCEA)
Two triangles on the same base (or equal bases) and between the same parallels are equal in area ⇒ ar(ΔABC) = ar(ΔCDA) + ar(ΔCED) + ar(ΔADE) ...(5)
In ΔABC,
∵    AD is a median.

therefore space space a r left parenthesis increment A B D right parenthesis equals a r left parenthesis increment A C D right parenthesis equals 1 half a r left parenthesis increment A B C right parenthesis space space space space space space space space space space space space space space space space space... left parenthesis 6 right parenthesis

∵ A median of a triangle divides it into two triangles of equal area
In ΔEBC,
∵ ED is a median.

therefore space space ae left parenthesis increment ECD right parenthesis equals ar left parenthesis increment EBD right parenthesis equals 1 half ar left parenthesis increment EBC right parenthesis space space space space space space space... left parenthesis 7 right parenthesis

∵ A median of a triangle divides it into two triangles of equal area ∵ ΔDEA and ΔDBE are on the same base DE and between the same parallels AB and DE.
∴ ar(ΔDEA) = ar(ΔDBE)    ...(8)
∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in area
Using (6), (7) and (8), (5) gives

ar left parenthesis increment ABC right parenthesis equals 1 half ar left parenthesis increment ABC right parenthesis plus ar left parenthesis increment BDE right parenthesis plus ar left parenthesis increment BDE right parenthesis
rightwards double arrow space space 1 half ar left parenthesis increment abc right parenthesis equals 2 ar left parenthesis increment BDE right parenthesis
rightwards double arrow space space ar space left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis.


(ii) ∵ ΔBAE and ΔBCE are on the same base BE and between the same parallels BE and AC.
∴ ar(ΔBAE) = ar(ΔBCE)
∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in
area
⇒ ar(ΔBAE) = 2 ar(ΔBDE)
| From (7)

rightwards double arrow space space space space space space space ar left parenthesis increment BDE right parenthesis equals 1 half ar left parenthesis increment BAE right parenthesis.

(iii)    2 ar(ΔBEC) = 2.2 ar(ΔBDE)

| From (7)

= 4 ar(ΔBDE) = ar(ΔABC).

| Form (i)

(iv)    ∵ ΔEBO and ΔEAD are on the same base ED and between the same parallels AB and DE.
∴ ar(ΔEBD) = ar(ΔEAD).
∵ Two triangles on the same base (or equal bases) and between the same parallels are equal in area ⇒ ar(ΔEBD) – ar(ΔEFD)
= ar(ΔEAD) – ar(ΔEFD)
| Subtracting the same areas from both sides ⇒ ar(ΔBFE) = ar(ΔAFD).

left parenthesis straight v right parenthesis space ar left parenthesis increment BDE right parenthesis equals 1 fourth ar left parenthesis increment ABC right parenthesis space space space space space space space space space space space vertical line space From space left parenthesis straight i right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 fourth.2 space ar left parenthesis increment ABD right parenthesis
space space space space space space space space space space space space space space space space space space equals space 1 half space ar left parenthesis increment ABD right parenthesis

∵ Bases of ΔBDE and ΔABD are the same.

therefore space space Altitude space of space increment BDE space equals space 1 half space Altitude space of space increment ABD space space space space space space space space... left parenthesis 9 right parenthesis
ar (ΔBEF) = ar(ΔAFD)    ...(10)                                             | From (iv)

because space  Altuitude of increment BDE equals 1 half Altitude  of increment ABD                   | From (9)

therefore  Altitude of increment BEF equals 1 half Altitude of increment AFD space space space space space space space space space space space... left parenthesis 11 right parenthesis

From (10) and (11),
BF = 2FD    ...(12)
In ΔBFE and ΔFED,
∵ BF = 2FD and, alt (ΔBFE) = alt (ΔFED) ar(ΔBFE) = 2 ar(ΔFED).


(vi) Let the altitude of ΔABD be h.

Then, altitude of increment BED equals straight h over 2 space space space space vertical line space because space space ar left parenthesis increment BDE right parenthesis

                      equals space 1 half ar left parenthesis increment ABD right parenthesis

Now,   ar left parenthesis increment FED right parenthesis equals 1 half. FD. straight h over 2 equals fraction numerator FD. straight h over denominator 4 end fraction space space space space space space space space space space space space space space space space... left parenthesis 13 right parenthesis

ar left parenthesis increment AFC right parenthesis equals 1 half. FC. straight h
space space equals 1 half left parenthesis FD plus DC right parenthesis straight h equals 1 half left parenthesis FD plus BD right parenthesis straight h
space space equals space 1 half left parenthesis FD plus BF plus FD right parenthesis straight h equals 1 half left parenthesis 2 FD plus BF right parenthesis straight h
space space equals space 1 half left parenthesis 2 FD plus 2 FD right parenthesis space straight h space space space space space space space space space space space space space space space space space space space space space space space space space vertical line space From space left parenthesis 12 right parenthesis
space space equals space 2. space FD. straight h

From (13) and (14), we obtain,

            ar left parenthesis increment FED right parenthesis equals 1 over 8 ar left parenthesis increment AFC right parenthesis

5356 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

78.

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar(ΔAPB) x ar(ΔCPD) = ar(ΔAPD) x ar(ΔBPC).

[Hint From A and C, draw perpendiculars to DD.] 

510 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

79. P and Q are respectively the midpoints of sides AB and BC of a triangle ABC and R is the mid-point of AP. Show that:

left parenthesis straight i right parenthesis space ar left parenthesis increment PRQ right parenthesis equals 1 half ar left parenthesis increment ARC right parenthesis
left parenthesis II right parenthesis space ar left parenthesis increment RQC right parenthesis equals 3 over 8 ar left parenthesis increment ABC right parenthesis

(iii) ar(ΔPBQ) = ar(ΔARC).
322 Views

80. In figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:



(i)    ΔMBC ≅ ΔABD
(ii)    ar(BYXD) = 2 ar(ΔMBC)
(iii) ar(BYXD) = ar(ΔABMN)
(iv)    ΔFCB ≅ ΔACE
(v)    ar(CYXE) = 2 ar(ΔFCB)
(vi)    ar(CYXE) = ar(ACFG)
(vii)    ar(BCED) = ar(ABMN) + ar(ACFG).
Note: Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.

510 Views

Advertisement