In the expansion of (x + a)n, sums of odd and even terms are P a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

11.

Find left parenthesis straight a plus straight b right parenthesis to the power of 4 minus left parenthesis straight a minus straight b right parenthesis to the power of 4. then evaluate space space left parenthesis square root of 3 plus square root of 2 right parenthesis to the power of 4 minus left parenthesis square root of 3 minus square root of 2 right parenthesis to the power of 4

128 Views

12.

Find left parenthesis straight x plus 1 right parenthesis to the power of 5 plus left parenthesis straight x minus 1 right parenthesis to the power of 5 and hence evaluate left parenthesis square root of 2 plus 1 right parenthesis to the power of 5 plus space left parenthesis square root of 2 minus 1 right parenthesis to the power of 5

209 Views

13.

Simplify: left parenthesis straight x plus 2 straight y right parenthesis to the power of 10 plus left parenthesis straight x minus 2 straight y right parenthesis to the power of 10

115 Views

14. Show that 9n + 1 - 8n - 9 is divisible by 64, whenever n is a positive integer. 
283 Views

Advertisement
15. Using Binomial Theorem, prove that 6n - 5n always leaves remainder 1 when divided by 25.
394 Views

16.

Find the value of space space open parentheses straight a squared plus square root of straight a squared minus 1 end root close parentheses to the power of 4 plus open parentheses straight a squared minus square root of straight a squared minus 1 end root close parentheses to the power of 4

121 Views

17. Find the expansion of (3x2 - 2ax + 3a2)3 using binomial theorem. 
199 Views

18. If a and b are distinct integers, prove that a-b is a factor of an - bn, whenever n is positive integer.
350 Views

Advertisement
19. Find co-efficient of x5 in the expansion of (1 + 3x)6 (1 - x)5
124 Views

Advertisement

20. In the expansion of (x + a)n, sums of odd and even terms are P and Q respectively. 
Prove that:

(a) 2 left parenthesis straight P squared plus straight Q squared right parenthesis space equals space left parenthesis straight x plus straight a right parenthesis to the power of 2 straight n end exponent plus left parenthesis straight x minus straight a right parenthesis to the power of 2 straight n end exponent  (b) left parenthesis straight P squared minus straight Q squared right parenthesis space equals space left parenthesis straight x squared minus straight a squared right parenthesis to the power of straight n


We have

           space space left parenthesis straight x plus straight a right parenthesis to the power of straight n equals straight C presuperscript straight n subscript 0 straight x to the power of straight n straight a to the power of 0 plus straight C presuperscript straight n subscript 1 straight x to the power of straight n minus 1 end exponent straight a plus straight C presuperscript straight n subscript 2 straight x to the power of straight n minus 2 end exponent straight a squared plus...... plus straight C presuperscript straight n subscript straight n straight x to the power of 0 straight a to the power of straight n
                         = P + Q                                                                         ...(i)
Where                   straight P equals straight C presuperscript straight n subscript 0 space straight x to the power of straight n straight a to the power of 0 plus straight C presuperscript straight n subscript 2 space end subscript straight x to the power of straight n minus 2 end exponent straight a squared plus........
                       space space space space space space space straight Q equals straight C presuperscript straight n subscript 1 space end subscript straight x to the power of straight n minus 1 end exponent straight a plus straight C presuperscript straight n subscript 3 space end subscript straight x to the power of straight n minus 3 end exponent space straight a cubed plus......

Now,             left parenthesis straight x minus straight a right parenthesis to the power of straight n space equals space straight C presuperscript straight n subscript 0 space straight x to the power of straight n straight a to the power of 0 minus straight C presuperscript straight n subscript 1 space straight x to the power of straight n minus 1 end exponent straight a plus straight C presuperscript straight n subscript 2 space end subscript straight x to the power of straight n minus 2 end exponent straight a squared....... plus left parenthesis negative 1 right parenthesis to the power of straight n straight C presuperscript space straight n end presuperscript subscript straight n space straight x to the power of 0 space straight a to the power of straight n
                               = P - Q                                                                    ...(ii)

Squaring and adding (i) and (ii),we get
(a) left parenthesis straight x plus straight a right parenthesis to the power of 2 straight n end exponent plus left parenthesis straight x minus straight a right parenthesis to the power of 2 straight n end exponent equals left parenthesis straight P plus straight Q right parenthesis squared plus left parenthesis straight P minus straight Q right parenthesis squared equals 2 left parenthesis straight P squared plus straight Q squared right parenthesis

Multiplying (i) and (ii), we get
(b) left parenthesis straight x plus straight a right parenthesis to the power of straight n cross times left parenthesis straight x minus straight a right parenthesis to the power of straight n equals left parenthesis straight P plus straight Q right parenthesis space left parenthesis straight P minus straight Q right parenthesis
                    space space space space space space space space left parenthesis straight x squared minus straight a squared right parenthesis to the power of straight n space equals space straight P squared minus straight Q squared


142 Views

Advertisement
Advertisement