from Mathematics Binomial Theorem

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

181. Statement space minus 1 space colon space sum from straight r space equals space 0 to straight n of space left parenthesis straight r plus 1 right parenthesis space to the power of straight n straight C subscript straight r space equals space left parenthesis straight n plus 2 right parenthesis 2 to the power of straight n minus 1 end exponent
Statement space minus space 2 colon thin space sum from straight r equals 0 to straight n of space left parenthesis straight r plus 1 right parenthesis space to the power of straight n straight C subscript straight r straight x to the power of straight r space equals space left parenthesis 1 plus straight x right parenthesis to the power of straight n space plus space nx space left parenthesis 1 plus straight x right parenthesis to the power of straight n minus 1 end exponent
  • Statement −1 is false, Statement −2 is true

  • Statement −1 is true, Statement −2 is true, Statement −2 is a correct explanation for Statement −1

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.


B.

Statement −1 is true, Statement −2 is true, Statement −2 is a correct explanation for Statement −1

sum from straight r space equals 0 to straight n of space left parenthesis straight r plus 1 right parenthesis space to the power of straight n straight C subscript straight r space equals space sum from straight r space equals space 0 to straight n of space straight r to the power of straight n straight C subscript straight r space plus space to the power of straight n straight C subscript straight r
space equals space sum from straight r space equals space 0 to straight n of space straight r space straight n over straight r space to the power of straight n minus 1 end exponent straight C subscript straight r minus 1 end subscript space plus space sum from straight r space equals space 0 to straight n of space to the power of straight n straight C subscript straight r space equals space straight n 2 to the power of straight n minus 1 end exponent space plus space 2 to the power of straight n
space equals space 2 to the power of straight n minus 1 end exponent space left parenthesis straight n plus 2 right parenthesis
Statement space minus 1 space true
sum for space of space left parenthesis straight r plus 1 right parenthesis to the power of straight n straight C subscript straight r space end subscript straight x to the power of straight r space equals space sum for space of straight r to the power of straight n space straight C subscript straight r straight x to the power of straight r space plus space sum for space of to the power of straight n straight C subscript straight r straight x to the power of straight r
space equals space straight n space sum from straight r space equals space 0 space to straight n of space to the power of straight n straight C subscript straight r minus 1 end subscript space straight x to the power of straight r space plus space sum from straight r space equals space 0 to straight n of space to the power of straight n straight C subscript straight r straight x to the power of straight r space equals space straight n space straight x space left parenthesis 1 space plus straight x right parenthesis to the power of straight n minus 1 end exponent space plus space left parenthesis 1 plus straight x right parenthesis to the power of straight n
substituting space straight x space equals space 1
sum for space of space left parenthesis straight r plus 1 right parenthesis space to the power of straight n straight C subscript straight r space equals space straight n 2 to the power of straight n minus 1 end exponent space plus space 2 to the power of straight n
Hence Statement −2 is also true and is a correct explanation of Statement −1.
154 Views

Advertisement
182.

In the binomial expansion of (a - b)n, n ≥ 5, the sum of 5th and 6th terms is zero, then
a/b equals

  • 5/n −4

  • 6 /n −5

  • n -5 /6

  • n -5 /6

159 Views

183.

The sum of the series 20C020C1 + 20C220C3 + …… - ….. + 20C10 is-

  • 20C10

  • 1 half straight C presuperscript 20 subscript 10
  • 0

  • 0

1417 Views

184.

If the expansion in powers of x of the function fraction numerator 1 over denominator left parenthesis 1 minus ax right parenthesis left parenthesis 1 minus bx right parenthesis end fraction is a0 + a1x + a2x2 + a3x3 + … , then an is

  • fraction numerator straight b to the power of straight n minus straight a to the power of straight n over denominator straight b minus straight a end fraction
  • fraction numerator straight a to the power of straight n minus straight b to the power of straight n over denominator straight b minus straight a end fraction
  • fraction numerator straight a to the power of straight n plus 1 end exponent minus straight b to the power of straight n plus 1 end exponent over denominator straight b minus straight a end fraction
  • fraction numerator straight a to the power of straight n plus 1 end exponent minus straight b to the power of straight n plus 1 end exponent over denominator straight b minus straight a end fraction
182 Views

Advertisement
185.

For natural numbers m, n if (1 − y)m (1 + y)n = 1 + a1y + a2y2 + … , and a1 = a2 = 10, then (m, n) is

  • (20, 45)

  • (35, 20)

  • (45, 35)

  • (45, 35)

180 Views

186.

The value of integral subscript 1 superscript straight a left square bracket straight x right square bracket straight f apostrophe left parenthesis straight x right parenthesis space dx comma space straight a space greater than 1,where [x] denotes the greatest integer not exceeding x is

  • af(a) − {f(1) + f(2) + … + f([a])}

  • [a] f(a) − {f(1) + f(2) + … + f([a])}

  • [a] f([a]) − {f(1) + f(2) + … + f(a)}

  • [a] f([a]) − {f(1) + f(2) + … + f(a)}

117 Views

187.

If a1, a2, … , an are in H.P., then the expression a1a2 + a2a3 + … + an−1an is equal to

  • n(a1 − an)

  • (n − 1) (a1 − an)

  • na1an

  • na1an

230 Views

188.

If xm.yn = (x+y)m+n, then dy/dx is

  • y/x

  • x+y/xy

  • xy

  • xy

229 Views

Advertisement
189.

The coefficient of the middle term in the binomial expansion in powers of x of (1 +αx)4  and of (1−αx )6  is the same if α equals

  • -5/3

  • 3/5

  • -3/10

  • -3/10

219 Views

190. If space straight S subscript straight n space equals space sum from straight r equals 0 to straight n of fraction numerator 1 over denominator straight C presuperscript straight n subscript straight r end fraction space and space straight t subscript straight n space equals space sum from straight r equals space 0 to straight n of space straight r over straight C subscript straight r space then comma straight t subscript straight n over straight S subscript straight n space is
  • 1 half straight n
  • 1 half straight n minus 1
  • n-1

  • n-1

161 Views

Advertisement