The coefficient of the middle term in the binomial expansion in

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

181. Statement space minus 1 space colon space sum from straight r space equals space 0 to straight n of space left parenthesis straight r plus 1 right parenthesis space to the power of straight n straight C subscript straight r space equals space left parenthesis straight n plus 2 right parenthesis 2 to the power of straight n minus 1 end exponent
Statement space minus space 2 colon thin space sum from straight r equals 0 to straight n of space left parenthesis straight r plus 1 right parenthesis space to the power of straight n straight C subscript straight r straight x to the power of straight r space equals space left parenthesis 1 plus straight x right parenthesis to the power of straight n space plus space nx space left parenthesis 1 plus straight x right parenthesis to the power of straight n minus 1 end exponent
  • Statement −1 is false, Statement −2 is true

  • Statement −1 is true, Statement −2 is true, Statement −2 is a correct explanation for Statement −1

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.

  • Statement −1 is true, Statement −2 is true; Statement −2 is not a correct explanation for Statement −1.

154 Views

182.

In the binomial expansion of (a - b)n, n ≥ 5, the sum of 5th and 6th terms is zero, then
a/b equals

  • 5/n −4

  • 6 /n −5

  • n -5 /6

  • n -5 /6

159 Views

183.

The sum of the series 20C020C1 + 20C220C3 + …… - ….. + 20C10 is-

  • 20C10

  • 1 half straight C presuperscript 20 subscript 10
  • 0

  • 0

1417 Views

184.

If the expansion in powers of x of the function fraction numerator 1 over denominator left parenthesis 1 minus ax right parenthesis left parenthesis 1 minus bx right parenthesis end fraction is a0 + a1x + a2x2 + a3x3 + … , then an is

  • fraction numerator straight b to the power of straight n minus straight a to the power of straight n over denominator straight b minus straight a end fraction
  • fraction numerator straight a to the power of straight n minus straight b to the power of straight n over denominator straight b minus straight a end fraction
  • fraction numerator straight a to the power of straight n plus 1 end exponent minus straight b to the power of straight n plus 1 end exponent over denominator straight b minus straight a end fraction
  • fraction numerator straight a to the power of straight n plus 1 end exponent minus straight b to the power of straight n plus 1 end exponent over denominator straight b minus straight a end fraction
182 Views

Advertisement
185.

For natural numbers m, n if (1 − y)m (1 + y)n = 1 + a1y + a2y2 + … , and a1 = a2 = 10, then (m, n) is

  • (20, 45)

  • (35, 20)

  • (45, 35)

  • (45, 35)

180 Views

186.

The value of integral subscript 1 superscript straight a left square bracket straight x right square bracket straight f apostrophe left parenthesis straight x right parenthesis space dx comma space straight a space greater than 1,where [x] denotes the greatest integer not exceeding x is

  • af(a) − {f(1) + f(2) + … + f([a])}

  • [a] f(a) − {f(1) + f(2) + … + f([a])}

  • [a] f([a]) − {f(1) + f(2) + … + f(a)}

  • [a] f([a]) − {f(1) + f(2) + … + f(a)}

117 Views

187.

If a1, a2, … , an are in H.P., then the expression a1a2 + a2a3 + … + an−1an is equal to

  • n(a1 − an)

  • (n − 1) (a1 − an)

  • na1an

  • na1an

230 Views

188.

If xm.yn = (x+y)m+n, then dy/dx is

  • y/x

  • x+y/xy

  • xy

  • xy

229 Views

Advertisement
Advertisement

189.

The coefficient of the middle term in the binomial expansion in powers of x of (1 +αx)4  and of (1−αx )6  is the same if α equals

  • -5/3

  • 3/5

  • -3/10

  • -3/10


C.

-3/10

The coefficient of x in the middle term of expansion of (1+ αx)4= 4C22
The coefficient of x in middle term of the expansion of 3(1− αx) = 6C3 (−α)3
According to question
straight C presuperscript 4 subscript 2 straight alpha squared space equals space to the power of 6 straight C subscript 3 space left parenthesis negative straight alpha right parenthesis cubed
fraction numerator 4 factorial over denominator 2 factorial 2 factorial end fraction straight alpha squared space equals space minus space fraction numerator 6 factorial over denominator 3 factorial 3 factorial end fraction straight alpha cubed
6 straight alpha squared space equals space minus space 20 straight alpha cubed
straight alpha space equals space minus space 6 over 20
straight alpha space equals space minus 3 over 10

219 Views

Advertisement
190. If space straight S subscript straight n space equals space sum from straight r equals 0 to straight n of fraction numerator 1 over denominator straight C presuperscript straight n subscript straight r end fraction space and space straight t subscript straight n space equals space sum from straight r equals space 0 to straight n of space straight r over straight C subscript straight r space then comma straight t subscript straight n over straight S subscript straight n space is
  • 1 half straight n
  • 1 half straight n minus 1
  • n-1

  • n-1

161 Views

Advertisement