In fig., an isosceles triangle ABC, with AB =AB, circumscribes a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

351.

In Fig., a circle touches the side DF of EDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of EDF (in cm) is:

                            

  • 18

  • 13.5

  • 12

  • 9


 Multiple Choice QuestionsShort Answer Type

352.

Tangents PA and PB are drawn from an external point P to two concentric circle with centre O and radii 8 cm and 5 cm respectively, as shown in Fig., If AP = 15 cm, then find the length of BP.

                           


 Multiple Choice QuestionsLong Answer Type

Advertisement

353.

In fig., an isosceles triangle ABC, with AB =AB, circumscribes a circle. Prove that the point of contact P bisects the base BC.

                            

                                            OR

In fig., the chord AB of the larger of the two concentric circles, with centre O, touches the smaller circle at C. Prove that AC = CB.

                                   


Given: ABC is an isosceles triangle, where AB = AC, circumscribing a circle. 

 

To prove: The point of contact P bisects the base BC, i.e. BP = PC

 

Proof: It can be observe that

BP and BR;  CP and CQ;  AR and AQ; are pairs of tangents drawn to the circle

from the external points B,  C, and A respectively.

Since the tangents drawn from an external point to a circle, then

                          BP = BR        ............(i)

                          CP = CQ        ............(ii)

                          AR = AQ        ............(iii)

Given that  AB = AC

 AR + BR = AQ + CQ

 BR = CQ             .........[ From (iii) ]

 BP = CP              .........[From (i) and (ii) ]

  P bisects BC.

 

                                     OR  

 

                   

Given: The chord AB of the larger of the two concentric circles, with centre O,

touches the smaller circle ar C.

 

To prove: AC = CB

 

Construction: Let us join OC.

 

Proof: In the smaller circle, AB is a tangent to the circle at the point of contact C.

 OC  AB        .....................(i)

( Using the property that the radius of a circle is perpendicular to the tangent at the point of contact )

 

For the larger circle, AB is a chord and from (i) we have OCAB 

 OC bisects AB

( Using the property that the perpendicular drawn from the centre to a chord  of  a circle bisects the chord.)

 AC = CB.

                                  


Advertisement
354.

Prove that the parallelogram circumscribing a circle is a rhombus.


                                       OR


Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.


Advertisement
355.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.


                                   OR


A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC.


Advertisement