Prove that the parallelogram circumscribing a circle is a rhombus

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

351.

In Fig., a circle touches the side DF of EDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then the perimeter of EDF (in cm) is:

                            

  • 18

  • 13.5

  • 12

  • 9


 Multiple Choice QuestionsShort Answer Type

352.

Tangents PA and PB are drawn from an external point P to two concentric circle with centre O and radii 8 cm and 5 cm respectively, as shown in Fig., If AP = 15 cm, then find the length of BP.

                           


 Multiple Choice QuestionsLong Answer Type

353.

In fig., an isosceles triangle ABC, with AB =AB, circumscribes a circle. Prove that the point of contact P bisects the base BC.

                            

                                            OR

In fig., the chord AB of the larger of the two concentric circles, with centre O, touches the smaller circle at C. Prove that AC = CB.

                                   


Advertisement

354.

Prove that the parallelogram circumscribing a circle is a rhombus.


                                       OR


Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.


Let ABCD be a parallelogram such that its sides touching a circle with centre O.

We know that the tangents to a circle from an exterior point are equal in length.

                  

 AP = AS      .......[Tangnts  from point A]    .......(i)

    BP = BQ      .......[Tangents from point B]   .......(ii)

    CR = CQ      .......[Tangents from point C]   .......(iii)

and, DR = DS   .......[Tangents from point D]  ........(iv)

 

Adding (i), (ii), (iii), and (iv), we get

AP + BP + CR + DR = AS + BQ + CQ + DS

 

(AP + BP) + (CR + DR) = ( AS + DS) + (BQ + CQ)

AB + CD = AD + BC

 

 2AB = 2BC         [ ABCD is a parallelogram  AB = CD and BC = AD]

 

AB = BC

 

Thus, AB = BC = CD = AD

 

Hence, ABCD is a rhombus.

 

                                         OR

 

A circle with centre O touches the sides  AB, BC, CD and DA  of a quadrilateral

ABCD at the points  P, Q, R and R respectively.

 

To prove:  AOB + COD = 180°  and,   AOD + BOC = 180°

                      

 Construction: Join OP, OQ, OR and OS.

 

Proof: Since the two tangents drawn from a external point to a circle

subtend equal angles at the centre.

 1 = 2,   3 = 4,    5 = 6  and 7 = 8Now,   1 + 2 +  3 + 4 + 5 +  6  + 7 + 8 = 360°                      [Sum of all the angles subtended at a point is 360°]2 ( 2 +  3 + 6  + 7) = 360°  and   2 (1 + 4 + 5 +  8) = 360° ( 2 +  3 ) + (6  + 7) = 180°   and  (1 +8) +( 4 + 5) = 180°         2 +  3 =AOB,     6  + 7 = COD   1 +8 =AOD    and    4 + 5 =BOC                    AOB  + COD = 180°  and AOD + BOC = 180°                                   

Hence proved.

 

 

 


Advertisement
Advertisement
355.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.


                                   OR


A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC.


Advertisement