Important Questions of Complex Numbers and Quadratic Equations Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
351.

If the coordinate axes are rotated through an angle π6 about the origin, then the transformed equation of 3x2 - 4xy + 3y2 = 0 is

  • 3y2 + xy = 0

  • x2 - y2 = 0

  • 3y2 - xy = 0


352.

The harmonic conjugate of (2, 3, 4) with respect to the points (3, - 2, 2), (6, - 17, - 4) is

  • 12, 13, 14

  • 185, - 5, 45

  • - 185, 54, 45

  • 185, - 5, - 45


353.

The harmonic mean of two numbers is - 85 and their geometric mean is 2. The quadratic equation whose roots are twice those numbers is

  • x2 + 5x + 4 = 0

  • x2 + 10x + 16 = 0

  • x2 - 10x + 16 = 0

  • x2 - 5x + 4 = 0


354.

If z is a complex number with z  5. Then the least value of z + 2z is

  • 245

  • 265

  • 235

  • 295


Advertisement
355.

If α  is  a  non-real  root  of  x7 = 1,  then α(1 + α) (1 + α2 + α4) =

  • 1

  • 2

  • - 1

  • - 2


356.

If ω is a complex root of unity, then for anyn > 1, r = 1n - 1rr  + 1 - ωr +1 - ω2 = 

  • n2n + 124

  • nn +12n +16

  • nn - 14n2 + 3n +4

  • nn +12n + 14


357.

If α, β, γ are the roots of x3 + px2 + qx +r = 0then the value of 1 + α21 + β21 + γ2 is

  • r - p2 + r - q2

  • 1 + p2 + 1 + q2

  • r+ p2 + q + 12

  • r - p2 + q - 12


358.

Let α and β be the roots of the equation, 5x2 + 6x  2 = 0. If Sn = αn+ βn, n = 1, 2, 3,..., then :

  • 6S6 +5S5 = 2S4

  • 5S6 +6S5 = 2S4

  • 5S6 +6S5 +2S4 = 0 

  • 6S6 + 5S5 +2S4 = 0


Advertisement
359.

The imaginary part of

3 +2 - 5412 - 3 - 2 - 5412 can be

  •  - 6

  • 6

  •  - 26

  • 6


360.

Let α, β are roots of x2 + px + 2 = 0 and 1α, 1β are the roots of 2x2 - 2qx + 1 = 0.Then find the value of α + 1ββ + 1αα - 1αβ - 1β

  • 949 - p2

  • 949 + p2

  • 499 - q2

  • 949 - q2


Advertisement