If (x + iy)3 = u + iv, then show that
(x + iy)3 = u + iv
u + iv = x3 + i3y3 + 3ixy ( x+ iy)
= x3 + iy3 + 3ix2y -3xy2
u + iv = (x3 - 3xy2 ) + i (3x2y - y3)
Equating real and imaginary parts, we get
u = x3 + iy3 + 3ix2y and v = 3x2y - y3
u = x(x2 - 3y2) and v = y(3x2 - y2)
and
Adding, we have
Hence,