If (a + ib) (c+id)(e+if)(g+ih) = A+iB, then show that : (a2 + b2) (c2 + d2 ) (e2 + f2 ) (g2 h2 ) = A2 + B2
Here, (a + ib) (c+id)(e+if)(g+ih) = A+iB
Taking modulus, on both sides, we get
Squaring both sides, we get
(a2 + b2) (c2 + d2 ) (e2 + f2 ) (g2 h2 ) = A2 + B2