If (a + ib) (c+id)(e+if)(g+ih) = A+iB, then show that : (a2 + b2) (c2 + d2 ) (e2 + f2 ) (g2 h2 ) = A2 + B2
Find the values of x and y, if.
3x + (-2x + y) i = 6-2i
3x + (-2x + y) i = 6-2i
Equating real and imaginary parts, we get
Re (z) : 3x = 6 x =2
1m(z) : -2x + y = -2 -4 + y = -2 y = 2
Hence, x = 2 and y = 2.