Let R be the set of real numbers and the functions f : R ➔

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

161.

Let R be the set of real numbers and the functions f : R ➔ R and g : R ➔ R be defined by f(x) = x2 + 2x - 3 and g(x) = x + 1. Then, the value of x for which f(g(x)) = g(f(x)) is

  • - 1

  • 0

  • 1

  • 2


A.

- 1

According to question,

f(g(x)) = g(f(x))

                                fx + 1 = gx2 + 2x - 3      x + 12 + 2x + 1 - 3 = x2 + 2x - 3 + 1 x2 + 1 + 2x + 2x + 2 - 3 = x2 + 2x - 2                                 x2 + 4x = x2 + 2x - 2       x2 + 4x - x2 - 2x + 2 = 0                                  2x + 2 = 0                                          2x = - 2                                            x = - 1


Advertisement
162.

The maximum value of z, when the complex number z satisfies the condition z + 2z = 2 is

  • 3

  • 3 + 2

  • 3 + 1

  • 3 - 1


163.

If 32 + i3250 = 325x +iy, where x and y are real, then the ordered pair (x, y) is

  • - 3, 0

  • 0, 3

  • 0, - 3

  • 12, 32


164.

If z - 1z + 1 is pure imaginary, then

  • z = 12

  • z = 1

  • z = 2

  • z = 3


Advertisement
165.

Let f(x) = ax2 + bx + c, g(x) = px2 + qx + r such that f(1) = g(1), f(2) = g(2) and f(3) - g(3) = 2. Then, f(4) - g(4) is

  • 4

  • 5

  • 6

  • 7


166.

The equations x2 + x + a= 0 and x2 + ax + 1 = 0 have a common real root

  • for no value of a

  • for exactly one value of a

  • for exactly two value of a

  • for exactly three value of a


167.

The points representing the complex number z for which arg z - 2z + 2 = π3 lie on

  • a circle

  • a straight line

  • an ellipse

  • a parabola


168.

The quadratic equation 2x2 - (a3 + 8a - 1)x + a2 - 4a = 0 posses roots of opposite sign. Then,

  •  0

  • 0 < a < 4

  • 4  a < 8

  • a  8


Advertisement
169.

If logex2 - 16  loge4x - 11, then

  • 4 < x  5

  • x < - 4 or x > 4

  • - 1 < x  5

  • x < - 1 or x > 5


 Multiple Choice QuestionsShort Answer Type

170.

Determine the sum of imaginary roots of the equation (2x + x - 1) ( 4x2 + 2x - 3) = 6


Advertisement