Let α, α2 be the roots of x2 + x + 1 = 0, then t

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

191.

For two complex numbers z1, z2 the relation z1 + z2 = z1 + z2 holds, if

  • arg(z1) = arg(z2)

  • arg(z1) + arg(z2) = π2

  • z1z2 = 1

  • z1 = z2


192.

If z + 4  3, then the greatest and the least value of z + 1 are

  • 6, - 6

  • 6, 0

  • 7, 2

  • 0, - 1


193.

The region of the complex plane for which z - az + a = 1, [Re (a)  0] is

  • x - axis

  • y - axis

  • the straight line x = a

  • None of the above


194.

The number of non-zero integral solutions of the equation 1 - ix = 2x

  • infinite

  • 1

  • 2

  • None of these


Advertisement
Advertisement

195.

Let α, α2 be the roots of x2 + x + 1 = 0, then the equation whose roots are α31, α62 is

  • x2 - x + 1 = 0

  • x2 + x - 1 = 0

  • x2 + x + 1 = 0

  • x60 + x30 + 1 = 0


C.

x2 + x + 1 = 0

Given equation is x2 + x + 1 = 0. Since, α, α2  are the roots of the equation.

 α + α2 = - 1           ...(i)        α3 = 1               ...(ii)Now, for the equation of roots are α31 and α62α31 + α62 = α311 + α31  α31 + α62 = α30α1 + α30 . α α31 + α62 = α310 . α1 + α310 . α α31 + α62 = α1 + α            using Eq. (ii) α31 + α62 = - 1                    using Eq. (i)Again α31 . α62 = α93                        = α331 = 1  Required equation is,x2 -  α31 + α62 x + α31 . α62 = 0 x2 + x +1 = 0


Advertisement
196.

The values of p for which the difference between the roots of the equation x2 + px + 8 = 0 is 2, are

  • ± 2

  • ± 4

  • ± 6

  • ± 8


197.

For any two complex numbers z1 and z2 and any real numbers a and b, az1 - az22 + bz1 + az22 is equal to

  • a2 + b2z1 + z2

  • a2 + b2z12 + z22

  • a2 + b2z12 - z22

  • None of these


198.

If w ( 1 )is a cube root of unity and (1 + w2)n = (1 + w4)n, then the least positive value of n is

  • 2

  • 3

  • 5

  • 6


Advertisement
199.

The complex numbers sin(x) + i cos(2x) and cos(x) - i sin(2x) are conjugate to each other for

  • x = 

  • x = n + 12π

  • x = 0

  • No value of x


200.

The locus of the points z which satisfy the condition argz - 1z + 1 = π3

  • a straight line

  • a circle

  • a parabola

  • None of the above


Advertisement