Argument of the complex number - 1 - 3i2 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

221.

If the axes are shifted to the point (1, - 2) without solution, then the equation 2x2 + y2 - 4x + 4y = 0 becomes

  • 2X2 + 3Y2 = 6

  • 2X2 + Y2

  • X2 + 2Y2

  • None of the above


222.

In a group ( G, *), then equation x * a = b has a

  • unique solution b * a-1

  • unique solution a-1 * b

  • unique solution a-1 * b-1

  • many solutions


223.

The number of solutions of the equation sin(ex) = 5x + 5-x,  is

  • 0

  • 1

  • 2

  • infinitely many


224.

If z satisfies the equation z - z = 1 + 2i, then z is equal to

  • 32 + 2i

  • 32 - 2i

  • 2 - 32i

  • 2 + 32i


Advertisement
225.

If z = 1 - i31 + i3, then arg (z) is

  • 60°

  • 120°

  • 240°

  • 300°


226.

For what values of m can the expression 2x2 + mxy + 3y2 - 5y - 2 be expressed as the product of two linear factors?

  • 0

  • ± 1

  • ± 7

  • 49


227.

If n is an integer which leaves remainder one when divided by three, then 1 + 3in + 1 - 3in equals

  • - 2n + 1

  • 2n + 1

  • - (- 2)n

  • - 2n


228.

If z - 25z - 1 = 5,  find the value of z

  • 3

  • 4

  • 5

  • 6


Advertisement
Advertisement

229.

Argument of the complex number - 1 - 3i2 +i is

  • 45°

  • 135°

  • 225°

  • 240°


C.

225°

- 1 - 3i2 + i = - 1 - 3i2 + i × 2 - i2 - i                    = - 2 + i - 6i + 3i24 + 1                    = - 2 - 5i - 35                    = - 5 - 5i5                    = - 1 - i

 - 1 - 3i2 +i = tan-1- 1- 1                        = 225°                                  Since the given number lies on a Illrd quadrant


Advertisement
230.

The number of real roots of the equation x4 + x4 + 20 = 22 is

  • 4

  • 2

  • 0

  • 1


Advertisement