Evaluate ∑k = 16sin2kπ7 - icos2k&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

241.

If the equations ax2 + 2cx + b = 0 and ax2 + 2bx + c = 0 b  c have a common root, then the value of a + 4b + 4c will be

  • 2

  • 1

  • - 1

  • Non eof these


242.

If one root of ax2 + bx + c = 0 is twice the other root, then

  • b2 = 9ac

  • 2b2 = 9ac

  • 2b2 = ac

  • b2 = ac


243.

The number of solutions of x2 + 3x + 2 = 0 the equation is

  • 0

  • 1

  • 2

  • 4


244.

Which of the following is correct?

  • 2 + 3i > 1 + 4i

  • 6 + 2i > 3 + 3i

  • 5 + 8i > 5 + 7i

  • None of these


Advertisement
245.

- 1 + - 323n + - 1 - - 323n is equal to

  • 0

  • 1

  • 2

  • 3


Advertisement

246.

Evaluate k = 16sin27 - icos27

  • 2i

  • - i

  • i

  • - 2i


C.

i

k = 16sin27 - icos27= - ik = 16cos27 + isin27= - icos2π7 + isin2π7 + cos4π7 + isin4π7+ cos12π7 + isin12π7= - icos2π7 + 4π7 + 6π7 + 8π7 + 10π7 + 12π7+ isin2π7 + + 4π7 + 6π7 + 8π7 + 10π7 + 12π7= - icos42π7 + isin42π7= - icos6π + isin6π= - icos6π = - i- 1 = i


Advertisement
247.

If x2 - 4x + log1/2(a) = 0 does not have two distinct real roots, then maximum value of a is

  • - 14

  • 116

  • 14

  • None of these


248.

The value of (1 + i)3 + (1 - i)6 is

  • i

  • 2(- 1 + 5i)

  • 1 - 5i

  • 2 + 1 - 5i


Advertisement
249.

If n is positive integer, then (1 + i)n + (1 - i)n is equal to

  • 2n - 2cos4

  • 2n - 2sin4

  • 2n + 2cos4

  • 2n + 2sin4


250.

The square root of 2i is

  • 1 + i

  • 1 - i

  • 2i

  • - 2


Advertisement