If ω is a complex cube root of unity, (x + 1) (x + &om

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

321.

If z = 1 + i3, then Arg z + Arg z = ?

  • 0

  • π3

  • π2

  • 2π3


Advertisement

322.

If ω is a complex cube root of unity, (x + 1) (x + ω)(x - ω - 1) is equal to

  • x3 - 1

  • x3 + 1

  • x3 + 2

  • x3 - 2


A.

x3 - 1

ω  cube root of unityie, ω3 = 1 and 1 + ω + ω2 = 0Then, x + 1x + ωx - ω - 1= x + 1x2 + ωx - ωx - ω2 - x - ω= x + 1x2 - x - ω +w2= x + 1x2 - x -  - 1        ω + ω2 = - 1= x + 1x2 - x + 1= x + 1x2 + 1  - x= x3 - 1


Advertisement
323.

3 + i7 + 3 - i7 = ?

  • 1283

  • 2563

  • - 1283

  • - 2563


324.

If a > 0 and b- 4ac = 0, then the curve y = ax2 + bx + c

  • cuts the x-axis

  • touches the x-axis and lies below it

  • lies entirely above the x-axis

  • touches the x-axis and lies above it


Advertisement
325.

If tan(A) and tan(B) are the roots of the quadratic equation x- px + q = 0, then sin2(A + B) is equal to

  • p2p2 + q2

  • p2p2 +q2

  • 1 -  p1 - q2

  • p2p2 + 1 - q2


326.

The value of a for which the equations x+ ax + 1 = 0 and x4 + ax2 + 1 = 0 have acommon root is

  • - 2

  • - 1

  • 1

  • 2


327.

Let z = a - i2; a  R. Then i + z2 - i - z2 = ?

  • 2

  • - 2

  • 4

  • - 4


328.

The locus of the complex number z such that argz - 2z +2 = π3 is 

  • a circle 

  • a straight line 

  • a parabola 

  • an ellipse


Advertisement
329.

1 +i20111 - i2009 = ?

  • - 1

  • 1

  • 2

  • - 2


330.

In PQR,  R = π4, tanP3, tanQ3 are the roots of the equation ax2 + bx + c = 0, then

  • a +b = c

  • b + c = 0

  • a + c = 0

  • b = c


Advertisement