The product of real of the equation

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

331.

The product of real of the equation x65 - 26x35 - 27 = 0

  • - 310

  • - 312

  • - 312/5

  • - 312/5


A.

- 310

Given equation isx65 - 26x35 - 27 = 0Put x35 = t t2 - 26t - 27 = 0 t2 - 27t + t - 27 = 0 tt - 27 + 1t - 27 = 0 t + 1t - 27 = 0 t = 27 or - 1 x35 = 27      x35  can not be negative x3 = 335 x = 35 or - 35 Product of x = 35 × - 35 = - 310


Advertisement
332.

If α, β, γ are the roots of the equation x3 + px2 + qx + r = 0, then the coefficient of x in the cubic equation whose roots are αβ + γ, βγ + α and γα + β is 

  • 2q

  • q2 + pr

  • p2 - qr

  • r(pq - r)


333.

If z is complex number such that z - 4z = 2, then the greatest value of z is

  • 1 + 2

  • 2

  • 3 + 1

  • 1 + 5


334.

If α is a  non-real root of the equation x6 - 1 = 0,then α2 + α3  + α4 + α5α + 1 = ?

  • α

  • 1

  • 0

  • - 1


Advertisement
335.

If α and β are the roots of the equation x2 - 2x + 4 = 0, then α9 + β9 is equal to

  • - 28

  • 29

  • - 210

  • 210


336.

If a complex number z satisfied z2 - 1 = z2 + 1, then z lies on

  • the real axis

  • the imaginary axis

  • y = x

  • a circle


337.

The number of solutions for z3 + z = 0 , is

  • 5

  • 1

  • 3

  • 2


338.

If x = p + q, y =  + 2 and z = 2 + , where is a complex cube root of unity, then xyz equals to

  • p3 + q3

  • p3 - pq + q3

  • 1 + p3 + q3

  • p3 - q3


Advertisement
339.

If ZR = cosπ2r + isinπ2r for r = 1, 2, 3, ...,then Z1Z2Z3 ...  = ?

  • - 2

  • 1

  • 2

  • - 1


340.

If x1 and xare the real roots of the equation x2 - kx + c = 0, then the distance between the points A(x1, 0) and B(x2, 0) is

  • k2 + 4c

  • k2 - c

  • c - k2

  • k2 - 4c


Advertisement