If α and β are the roots of the equation 2x(2x + 1) = 1, then β is equal to :
2αα - 1
2αα + 1
2α2
- 2αα + 1
If the complex numbers z1, z2, z3 and z4 denote the vertices of a square taken in order. If z1 = 3 + 4i and z3 = 5 + 6i, then the other two vertices z2 and z4 are respectively
5 + 4i, 5 + 6i
5 + 4i, 3 + 6i
5 + 6i, 3 + 5i
3 + 6i, 5 + 3i
If 1 + ix - i2 + i + 1 + 2iy + i2 - i = 1, then x, y =?
73, - 715
73, 715
75, - 715
75, 715
A.
1 + ix - i2 + i + 1 + 2iy + i2 - i = 1⇒ 1 + ix - i2 - i4 - i2 + 1 + 2iy + i2 + i4 - i2 = 1⇒ 21 + ix - 2i - i1 + ix + i24 + 1 + 21 + 2iy + 2i + i1 + 2ix + i24 + 1 = 1⇒ 2 + 2i - i - i2x - 2i + i25 + 2 + 4i + i + 2i2y + 2i + i25 = 1⇒ 3 + ix - 2i - 1 + 5iy + 2i - 1 = 5⇒ 3 + ix + 5iy = 7⇒ 3x + ix + 5iy - 7 = 0⇒ 3x - 7 + x + 5yi = 0 + 0iOn compairing, we get3x - 7 = 0⇒ x = 73, x + 5y = 0⇒ y = - 715Hence, x, y = 73, - 715