The cubic equation whose roots are the squares of the roots of x3

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

If p and q are distinct prime numbers and if the equation x2 - px + q = 0 has positive integers as its roots, then the roots of the equation are

  • 1, - 1

  • 2, 3

  • 1, 2

  • 3, 1


Advertisement

342.

The cubic equation whose roots are the squares of the roots of x3 - 2x2 + 10x - 8 = 0, is

  • x3 + 16x2 + 68x - 64 = 0

  • x3 + 8x2 + 68x - 64 = 0

  • x3 + 16x2 - 68x - 64 = 0


A.

x3 + 16x2 + 68x - 64 = 0

Let α, β, γ are the roots ofx3 - 2x2 + 10x - 8 = 0 α + β + γ = 2,αβ + βγ + γα = 10and αβγ = 8Now, α2 + β2 + γ2 = α + β + γ2 - 2αβ + βγ + γα= 22 - 210 = - 16α2β2 + β2γ2 + γ2α2 = αβ + βγ + γα2 - 2α + β + γαβγ= 102 - 228= 100 - 32 = 68and α2β2γ2 = 82 = 64 Required cubic equation isx3 - - 16x2 + 68x - 64 = 0 x3 + 16x2 +68x - 64 = 0


Advertisement
343.

If ω is a complex cube root of unity, thenω13 + 29 + 427 +     + ω12 + 38 + 932 +    = ?

  • 1

  • - 1

  • ω

  • i


344.

The common roots of the equations z3 +2z2 + 2z + 1 = 0,  z2014 + z2015 + 1 = 0 are

  • ω, ω2

  • 1, ω, ω2

  • - 1, ω, ω2

  • - ω, - ω2


Advertisement
345.

If the harmonic mean of the roots of 2x2 - bx + 8 - 2d = 0 is 4, then the value of b is

  • 2

  • 3

  • 4 - 5

  • 4 + 5


346.

For real value of x, the rane of x2 + 2x +1x2 + 2x - 1 is

  • - , 0  1, 

  • 12, 2

  • - , - 29  1, 

  • - , - 6 - 2, 


347.

The locus of the point representing the complex number z for which z + 32 - z - 32 = 15 is

  • a circle

  • a parabola

  • a straight line

  • an ellipse


348.

1 + i20161 - i2014 = ?

  • - 2i

  • 2i

  • 2

  •  - 2


Advertisement
349.

The number of real roots of the equation x5 +3x3 + 4x + 30 = 0 is

  • 1

  • 2

  • 3

  • 5


350.

If the coefficients of the equation whose roots are k times the roots of the equation x3 + 14x2 - 116x + 1144 = 0, are integers, then a possible value of k is

  • 3

  • 12

  • 9

  • 4


Advertisement