The common roots of the equations z3 + 2z2 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

If p and q are distinct prime numbers and if the equation x2 - px + q = 0 has positive integers as its roots, then the roots of the equation are

  • 1, - 1

  • 2, 3

  • 1, 2

  • 3, 1


342.

The cubic equation whose roots are the squares of the roots of x3 - 2x2 + 10x - 8 = 0, is

  • x3 + 16x2 + 68x - 64 = 0

  • x3 + 8x2 + 68x - 64 = 0

  • x3 + 16x2 - 68x - 64 = 0


343.

If ω is a complex cube root of unity, thenω13 + 29 + 427 +     + ω12 + 38 + 932 +    = ?

  • 1

  • - 1

  • ω

  • i


Advertisement

344.

The common roots of the equations z3 +2z2 + 2z + 1 = 0,  z2014 + z2015 + 1 = 0 are

  • ω, ω2

  • 1, ω, ω2

  • - 1, ω, ω2

  • - ω, - ω2


A.

ω, ω2

The given equationz3 +2z2 + 2z + 1 = 0,  z2014 + z2015 + 1 = 0 can be written asz + 1z2 + z + 1 = 0Since, its roots are - 1, ω, ω2Let fz = z2014 + z2015 + 1 = 0Put z = - 1, ω, ω2 respectively, we getf - 1 = - 12014 +  - 12015 + 1 = 0= 1  0Therefore, - 1 is not a root of the equation f(z) = 0Again, f(ω) = ω2014 + ω2015 + 1 = 0= ω3671ω + ω3671ω2 + 1 = 0 ω + ω2 + 1 ω2 + ω + 1 = 0 0 = 0Therefore, ω is a root of the equation f(z) = 0Similarly,f(ω3) =ω22014 + ω32015 + 1 = 0 ω31342 . ω2 + ω31343ω 1 = 0 ω2 + ω +1 = 0 0 = 0Hence, ω and ω2 are the common roots


Advertisement
Advertisement
345.

If the harmonic mean of the roots of 2x2 - bx + 8 - 2d = 0 is 4, then the value of b is

  • 2

  • 3

  • 4 - 5

  • 4 + 5


346.

For real value of x, the rane of x2 + 2x +1x2 + 2x - 1 is

  • - , 0  1, 

  • 12, 2

  • - , - 29  1, 

  • - , - 6 - 2, 


347.

The locus of the point representing the complex number z for which z + 32 - z - 32 = 15 is

  • a circle

  • a parabola

  • a straight line

  • an ellipse


348.

1 + i20161 - i2014 = ?

  • - 2i

  • 2i

  • 2

  •  - 2


Advertisement
349.

The number of real roots of the equation x5 +3x3 + 4x + 30 = 0 is

  • 1

  • 2

  • 3

  • 5


350.

If the coefficients of the equation whose roots are k times the roots of the equation x3 + 14x2 - 116x + 1144 = 0, are integers, then a possible value of k is

  • 3

  • 12

  • 9

  • 4


Advertisement