Find the equation of the circle passing through the points A (5,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

11. Find the equation of a circle, the two ends of whose diameter are A(4, –5) and R (–2, –1).
146 Views

 Multiple Choice QuestionsLong Answer Type

12. Find the equation of a circle which passes through the points (2, 3) and (–1, 1) and whose centre lies on the straight line x – 3y – 11 = 0.
161 Views

Advertisement

13. Find the equation of the circle passing through the points A (5, 7), B (6, 6) and C (2, –2).


Let the equation of the circle be space space space space left parenthesis straight x minus straight h right parenthesis squared plus left parenthesis straight y minus straight k right parenthesis squared space equals space straight r squared                                                                       ...(i)
The circle passes through A (5, 7)
rightwards double arrow  space space space left parenthesis 5 minus straight h right parenthesis squared plus left parenthesis 7 minus straight k right parenthesis squared space equals space straight r squared space rightwards double arrow space straight h squared plus straight k squared minus 10 straight h minus 14 straight k plus 25 plus 49 equals straight r squared                     
 rightwards double arrow             space space space minus 10 straight h minus 14 straight k plus 74 space equals space straight r squared minus straight h squared minus straight k squared                                                                                    ...(ii)

The circle passes through B (6, 6)
rightwards double arrowleft parenthesis 6 minus straight h right parenthesis squared plus left parenthesis 6 minus straight k right parenthesis squared space equals space straight r squared space rightwards double arrow space straight h squared plus straight k squared minus 12 straight h minus 12 straight k plus 36 plus 36 equals straight r squared                             
rightwards double arrow               negative 12 straight h minus 12 straight k plus 72 space equals space straight r squared minus straight h squared minus straight k squared                                                                                       ...(iii)
The circle passes through point C (2, -2)
rightwards double arrow    space space space left parenthesis 2 minus straight h right parenthesis squared plus left parenthesis negative 2 minus straight k right parenthesis squared equals straight r squared space rightwards double arrow space straight h squared plus straight k squared minus 4 straight h plus 4 straight k plus 4 plus 4 equals straight r squared
rightwards double arrow             negative 4 straight h plus 4 straight k plus 8 equals straight r squared minus straight h squared minus straight k squared                                                                                                  ...(iv)
Equating (ii) and (iii), we have -10h - 14k + 74 = -12h - 12k + 72
rightwards double arrow            2h - 2k + 2 = 0 rightwards double arrow  h - k + 1 = 0                                                                                             ...(v)
Equating (iii) and (iv), we have
       -12h - 12k + 72 = -4h + 4k + 8 rightwards double arrow 8h + 16k - 64 = 0 rightwards double arrow h + 2k - 8 =0                                               ...(vi)
Subtracting (v) from (vi), we get
                3k - 9 = 0  rightwards double arrow  k = 3
Also, from (vi), h + 2 (3) - 8 = 0 rightwards double arrow h = 2
So, the centre of the circle is : left parenthesis straight h comma space straight k right parenthesis space left right arrow space left parenthesis 2 comma space 3 right parenthesis
It passes through point A (5, 7)
rightwards double arrow r = distance between the centre and the point.
rightwards double arrow r = <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
Hence, the equation of the circle is: space space left parenthesis straight x minus straight h right parenthesis squared plus left parenthesis straight y minus straight k right parenthesis squared space equals space straight r squared
or    left parenthesis straight x minus 2 right parenthesis squared plus left parenthesis straight y minus 3 right parenthesis squared space equals space 5 squared space or space straight x squared plus straight y squared minus 4 straight x minus 6 straight y plus 4 plus 9 equals 25
or   straight x squared plus straight y squared minus 4 straight x minus 6 straight y minus 12 equals 0
  

88 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

14. Find the equation of the circle with radius 5, whose centre lies on x-axis and passing through the point (2, 3).
106 Views

Advertisement
15. Find the centre and radii of the following circle:
open parentheses straight x plus 3 over 2 close parentheses squared plus open parentheses straight y minus 5 over 2 close parentheses squared equals 289 over 4
94 Views

16. Find the centre and radii of the following circle:
left parenthesis straight x plus 5 right parenthesis squared plus left parenthesis straight y minus 3 right parenthesis squared space equals space 36

88 Views

17. Find the centre and radii of the following circle:
straight x squared plus straight y squared equals 49


102 Views

18. Find the centre and radii of the following circle:
straight x squared plus straight y squared minus 8 straight x plus 10 straight y minus 12 equals 0



93 Views

Advertisement
19. Find the centre and radii of the following circle:
space space 2 straight x squared plus 2 straight y squared minus straight x equals 0




114 Views

20. Find the co-ordinates of the centre and the radius of the circle
straight x squared plus straight y squared minus 2 ax space cosθ space minus space 2 ay space sinθ space minus space 8 straight a squared equals 0
90 Views

Advertisement