The equations of the latus rectum of the ellipse9x2 + 25y2 - 36x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

591.

A circle S cuts three circles

x2 + y2 - 4x - 2y +4 = 0x2 + y2 - 2x - 4y + 1 = 0and x2 +y2 +4x +2y +1 = 0

Orthogonally. Then the radius of S is

  • 298

  • 2811

  • 297

  • 295


592.

The distance between the vertex and the focus of the parabola x2 - 2x + 3y - 2 = 0 is

  • 45

  • 34

  • 12

  • 56


593.

If (x1, y1) and (x2, y2) are the end points of a focal chord of the parabola y2 = 5x, then 4x1x2 + y1y2, is equal to

  • 25

  • 5

  • 0

  • 54


594.

The distance between the focii of the ellipse
x = 3cosθ, y = 4sinθ is

  • 27

  • 72

  • 7

  • 37


Advertisement
Advertisement

595.

The equations of the latus rectum of the ellipse
9x2 + 25y2 - 36x + 50y - 164 = 0 are

  • x - 4 = 0, x + 2 = 0

  • x - 6 = 0, x + 2 = 0

  • x + 6 = 0, x - 2 = 0

  • x + 4 = 0, x + 5 = 0


B.

x - 6 = 0, x + 2 = 0

9x2 +25y2 - 36x + 50y - 164 = 09x2- 36x + 36 + 25y2 + 50y + 25 = 164 + 36 + 259x2 - 4x + 4 +25y2 + 2y +1 = 225 9x - 22 + 25y +12 = 225 x - 2225 + y +129 = 1Eccentricity of ellipse, e = 1 - ba2= 1 - 925 = 45Equation of latus rectum isx - 2 = ± ae x - 2 = ± 5 ×45 x - 2 = ± 4 x = ± 4 +2 x = 6 and x = - 2 x - 6 = 0, x + 2 = 0


Advertisement
596.

The values of m for which the line y = mx + 2
becomes a tangent to the hyperbola 4x2 - 9y2 = 36 is

  • ± 23

  • ± 223

  • ± 89

  • ± 423


597.

The equation of the common tangent drawn to the curves y = 8x and xy = - 1 is

  • y = 2x + 1

  • 2y = x + 6

  • y = x + 2

  • 3y = 8x + 2


598.

The area included between the parabola y = x24a and the curve y = 8a3x2 + 4a2 is

  • a22π + 23

  • a22π - 83

  • a2π + 43

  • a22π - 43


Advertisement
599.

If a circle with radius 2.5 units passes through the points (2, 3) and (5, 7), then its centre is

  • (1 5, 2)

  • (7, 10)

  • (3, 4)

  • (3 5, 5)


600.

The circumcentre of the triangle formed by the points (1, 2, 3) (3, - 1, 5), (4, 0, - 3) is

  • (1, 1, 1)

  • (2, 2, 2)

  • (3, 3, 3)

  • 72,  - 12, 1


Advertisement