The equation of the common tangent drawn to the curves y = 8x and

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

591.

A circle S cuts three circles

x2 + y2 - 4x - 2y +4 = 0x2 + y2 - 2x - 4y + 1 = 0and x2 +y2 +4x +2y +1 = 0

Orthogonally. Then the radius of S is

  • 298

  • 2811

  • 297

  • 295


592.

The distance between the vertex and the focus of the parabola x2 - 2x + 3y - 2 = 0 is

  • 45

  • 34

  • 12

  • 56


593.

If (x1, y1) and (x2, y2) are the end points of a focal chord of the parabola y2 = 5x, then 4x1x2 + y1y2, is equal to

  • 25

  • 5

  • 0

  • 54


594.

The distance between the focii of the ellipse
x = 3cosθ, y = 4sinθ is

  • 27

  • 72

  • 7

  • 37


Advertisement
595.

The equations of the latus rectum of the ellipse
9x2 + 25y2 - 36x + 50y - 164 = 0 are

  • x - 4 = 0, x + 2 = 0

  • x - 6 = 0, x + 2 = 0

  • x + 6 = 0, x - 2 = 0

  • x + 4 = 0, x + 5 = 0


596.

The values of m for which the line y = mx + 2
becomes a tangent to the hyperbola 4x2 - 9y2 = 36 is

  • ± 23

  • ± 223

  • ± 89

  • ± 423


Advertisement

597.

The equation of the common tangent drawn to the curves y = 8x and xy = - 1 is

  • y = 2x + 1

  • 2y = x + 6

  • y = x + 2

  • 3y = 8x + 2


C.

y = x + 2

Let Pt,  - 1t be a point on xy = - 1Equation of tangent at P is 12X - 1t + ty = - 1- x + t2y = - 2t y = - xt2 + 2t is also at tangent of y2 = 8x, ie.c = am 2t = 21t2 t3 = 1   t = 1Hence, the equation common tangent isy = x + 2


Advertisement
598.

The area included between the parabola y = x24a and the curve y = 8a3x2 + 4a2 is

  • a22π + 23

  • a22π - 83

  • a2π + 43

  • a22π - 43


Advertisement
599.

If a circle with radius 2.5 units passes through the points (2, 3) and (5, 7), then its centre is

  • (1 5, 2)

  • (7, 10)

  • (3, 4)

  • (3 5, 5)


600.

The circumcentre of the triangle formed by the points (1, 2, 3) (3, - 1, 5), (4, 0, - 3) is

  • (1, 1, 1)

  • (2, 2, 2)

  • (3, 3, 3)

  • 72,  - 12, 1


Advertisement