The centre of the circle passing through the point (0, 1) and tou

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

621.

Let x = 4 be a directrix to an ellipse whose centre is at the origin and its eccentricity is 21. If P(1, β), β > 0 is a point on this ellipse, then the equation of the normal to it at P is

  • 7x - 4y = 1

  • 4x - 2y = 1

  • 8x - 2y = 5

  • 4x - 3y = 2


 Multiple Choice QuestionsShort Answer Type

622.

Let PQ be a diameter of the circle x2 + y2 = 9. If α and β are the lengths of the perpendiculars from P and Q on the straight line,  x + y = 2 respectively, then the maximum value of αβ is .....


 Multiple Choice QuestionsMultiple Choice Questions

623.

If the common tangent to the parabolas, y2 = 4x and x2 = 4y also touches the circle, x2 + y2 = c2, then c is equal to :

  • 12

  • 122

  • 12

  • 14


624.

If the co–ordinates of two points A and B are 7, 0 and  - 7, 0 respectively and P is any point on the conic, 9x2 + 16y2 = 144, then PA + PB is equal to :

  • 8

  • 16

  • 9

  • 6


Advertisement
625.

If the line y = mx + c is a common tangent to the hyperbola x2100 - y264 = 1 and the circle x2 + y2 = 36, then which one of the following is true 

  • 4c2 = 369

  • 5m = 4

  • c2 = 369

  • 8m + 5 = 0


626.

If the length of the chord of the circle, x2 + y2 = r2(r > 0) along the line, y – 2x = 3 is r, then r2 is equal to :

  • 95

  • 12

  • 125

  • 245


627.

Let L1 be a tangent to the parabola y2 = 4(x + 1) and L2 be a tangent to the parabola y2 = 8(x + 2) such that L1 and L2 intersect at right angles. Then L1 and L2 meet on the straight line :

  • x + 3 = 0

  • 2x + 1 = 0

  • x + 2y = 0

  • x + 2 = 0


628.

Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse,  x24 + y22 = 1 from any of its foci?

  •  - 2, 3

  •  - 1, 2

  • (1, 2)

  •  - 1, 3


Advertisement
629.

If the normal at an end of latus rectum of an ellipse passes through an extremity of the minor axis, the eccentricity e of the ellipse satisfies : 

  • e4 + 2e2 - 1 = 0

  • e2 +  e - 1

  • e2 + 2e - 1 = 0

  • e4 + e2 - 1 = 0


Advertisement

630.

The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is:

  • 310, 165

  • - 5310, 165

  •  - 165, 5310

  • 65, 5310


C.

 - 165, 5310

y = x2, 2, 4tangent at 2, 4 is12y + 4 = 4x  4x - y - 4 = 0Equation of circle x - 22 + y - 42 + λ4x - y - 4 = 0it passes through 0, 1 4 + 9 + λ0 - 1 - 4 = 013 = 5λ  λ = 135

 circle is x2  4x + 4 + y2  8y + 16 + 135(4x  y  4) = 0 x2 + y2 + 525 - 4x - 8 + 135y + 20 - 525 = 0 x2 + y2 + 325x - 535y + 485 = 0 centre is - 165, 5310


Advertisement
Advertisement