Examine the continuity of f (x) at x = 0. from Mathematics Cont

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

21.

Examine the  continuity of 
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x minus straight a close vertical bar over denominator straight x minus straight a end fraction space space space space space space straight x not equal to straight a end cell row cell space space space space space space space space 1 space space space space space space space space space space space straight x equals straight a end cell end table close space at space space straight x equals straight a

129 Views

Advertisement

22. Examine the continuity of f (x) at x = 0.
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator 2 open vertical bar straight x close vertical bar end fraction comma space straight x not equal to 0 end cell row cell space space space space space 1 half comma space straight x equals 0 end cell end table close


Here space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator 2 open vertical bar straight x close vertical bar end fraction comma space straight x not equal to 0 end cell row cell space space space space space 1 half comma space straight x equals 0 end cell end table close
space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator straight x over denominator 2 open vertical bar straight x close vertical bar end fraction equals space Lt with straight x rightwards arrow 0 to the power of minus below fraction numerator straight x over denominator 2 left parenthesis negative straight x right parenthesis end fraction space space space left square bracket because space open vertical bar straight x close vertical bar equals negative straight x space for space straight x less than 0 right square bracket
space space space space space space space space space space space space space space space space equals space minus 1 half space Lt with straight x rightwards arrow 0 to the power of minus below equals negative 1 half space Lt with straight x rightwards arrow 0 to the power of minus below space left parenthesis 1 right parenthesis equals negative 1 half cross times 1 equals space minus 1 half
space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis equals space Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator straight x over denominator 2 open vertical bar straight x close vertical bar end fraction equals space Lt with straight x rightwards arrow 0 to the power of plus below fraction numerator straight x over denominator 2 space straight x end fraction space space space space space space space space space left square bracket because space open vertical bar straight x close vertical bar equals straight x space for space straight x greater than 0 right square bracket
space space space space space space space space space space space space space space space space equals 1 half Lt with straight x rightwards arrow 0 to the power of plus below left parenthesis 1 right parenthesis equals 1 half cross times 1 equals 1 half
therefore space space space space space space space Lt with straight x rightwards arrow 0 to the power of minus below straight f left parenthesis straight x right parenthesis space not equal to space Lt with straight x rightwards arrow 0 to the power of plus below straight f left parenthesis straight x right parenthesis space space space space space space space space space rightwards double arrow space space space straight f left parenthesis straight x right parenthesis space is space discontinous space at space straight x equals 0.
79 Views

Advertisement
23. Examine the continuity of f (x) at x = 0.
If space straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell straight x minus open vertical bar straight x close vertical bar comma space straight x not equal to 0 end cell row cell space space space space space space 2 space space space comma space straight x equals 0 end cell end table close
80 Views

24.  Test the continuity of the function f(x) at the origin :
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction comma space space space space straight x not equal to 0 end cell row cell space space space 1 space space space space comma space space space space straight x equals 0 end cell end table close
89 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

25. Test the continuity of the function f(x) at the originstraight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator open vertical bar straight x close vertical bar over denominator straight x end fraction comma space space space space straight x not equal to 0 end cell row cell space space space 0 space space space space comma space space space space straight x equals 0 end cell end table close
then show that f(x) is discontinuous at x = 0.
77 Views

26. Prove that the function
straight f left parenthesis straight x right parenthesis open curly brackets table attributes columnalign left end attributes row cell fraction numerator straight x over denominator open vertical bar straight x close vertical bar plus 2 straight x squared end fraction comma space straight x not equal to 0 end cell row cell space space space space space space space space space straight k space space space space space space space comma space straight x equals 0 end cell end table close
remains discontinuous at x = 0, regardless of the choice of k.
174 Views

27. Show that the function f given by f(x) = | x | + | x –1 |,x ∈ R is continuous both at x =.0 and x = 1.
77 Views

28.

Discuss continuity of the function f given by

f(x) = | x – 1| + | x – 2 ] at x = 1 and x = 2.

89 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

29. Discuss the continuity or otherwise of the function f(x) defined by
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin 3 straight x over denominator straight x end fraction comma space straight x not equal to 0 end cell row cell space space space space 1 space space space space space space comma space straight x equals 0 end cell end table close space
at space straight x equals 0
87 Views

30. Discuss the continuity or otherwise of the function f(x) defined by
straight f left parenthesis straight x right parenthesis equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin space 2 straight x over denominator sin space 3 straight x end fraction comma space straight x not equal to 0 end cell row cell space space space space space space 2 space space space space space comma space straight x equals 0 end cell end table close
at space straight x equals 0
88 Views

Advertisement