from Mathematics Continuity and Differentiability

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

211. Differentiate x2 e3x w.r.t. (log x)2.
89 Views

212. Differentiate space log space straight x space straight w. straight r. straight t space 1 over straight x
93 Views

213. Differentiate space straight x squared space straight w. straight r. straight t space straight x cubed
84 Views

214. Differentiate log (x ex) w.r.t. x log x.
92 Views

Advertisement
215. Find space dy over dx space if space straight x to the power of 6 plus straight y to the power of 6 plus 6 straight x squared straight y squared equals 16.
90 Views

216. Find dy over dx in the following :
x2 + x y + y2 = 100 
84 Views

217. Find dy over dx in the following :
x3 + x2 y + x y2 + y3 = 81
90 Views

218. Find space dy over dx space where space straight x squared over straight a squared plus straight y squared over straight b squared equals 2003
89 Views

Advertisement
219. Find space dy over dx space where space 4 straight x squared plus 5 xy plus 7 straight y squared minus 8 straight x plus 9 straight y plus 3 equals 0.
71 Views

Advertisement

220. Find space dy over straight d space where space straight x squared plus straight y squared equals 30 straight x space straight y


Here space straight x squared plus straight y squared equals 30 straight x space straight y
Differentiating space both space sides space straight w. straight r. straight t space space straight x comma space we space get comma
space space space space space space space space 3 straight x squared plus 2 straight y dy over dx equals 30 straight x dy over dx plus 30 straight y.1
therefore left parenthesis 2 straight y minus 30 straight x right parenthesis dy over dx equals 30 straight y minus 3 straight x squared
therefore space space space space space space space space space space space space space dy over dx equals fraction numerator 3 left parenthesis 10 straight y minus straight x squared right parenthesis over denominator 2 left parenthesis straight y minus 15 straight x right parenthesis end fraction
81 Views

Advertisement
Advertisement