Differentiate the following w.r.t. x :(log x)log x + (1 + x)2x

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

261. Differentiate x.logx.log(log x)w.r.t.x.
84 Views

262. If space straight x to the power of straight p. straight y to the power of straight q equals left parenthesis straight x plus straight y right parenthesis to the power of straight p plus straight q end exponent comma space show space that space dy over dx equals straight y over straight x
80 Views

 Multiple Choice QuestionsLong Answer Type

263. Differentiate xlog x + (log x)x w.r.t.x 
73 Views

 Multiple Choice QuestionsShort Answer Type

264. Differentiate the following functions w.r.t. x : straight x to the power of straight x plus straight x to the power of log space straight x end exponent
73 Views

Advertisement
265. Differentiate the following functions w.r.t. x :
left parenthesis log space straight x right parenthesis to the power of straight x plus straight x to the power of log space straight x end exponent
73 Views

266. Differentiate the following functions w.r.t. x :
open parentheses straight x plus 1 over straight x close parentheses to the power of straight x plus straight x to the power of open parentheses straight x plus 1 over straight x close parentheses end exponent
81 Views

267. Differentiate the following functions w.r.t. x :straight x to the power of straight x to the power of 2 minus 3 end exponent end exponent plus left parenthesis straight x minus 3 right parenthesis to the power of straight x squared end exponent space for space straight x greater than 3
73 Views

Advertisement

268. Differentiate the following w.r.t. x :(log x)log x + (1 + x)2x


Let space space straight y equals left parenthesis log space straight x right parenthesis to the power of log space straight x end exponent plus left parenthesis 1 plus straight x right parenthesis to the power of 2 straight x end exponent
Put space left parenthesis log space straight x right parenthesis to the power of log space straight x end exponent equals straight u comma space left parenthesis 1 plus straight x right parenthesis to the power of 2 straight x end exponent equals straight v
therefore space straight y equals straight u plus straight v
therefore space dy over dx equals du over dx plus dv over dx space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
Now space straight u equals left parenthesis log space straight x right parenthesis to the power of log space straight x end exponent
therefore space log space straight u equals log left parenthesis log space straight x right parenthesis to the power of log space straight x end exponent equals log space straight x. log left parenthesis log space straight x right parenthesis
therefore space 1 over straight u du over dx equals log space straight x. fraction numerator 1 over denominator log space straight x end fraction.1 over straight x plus log left parenthesis log space straight x right parenthesis.1 over straight x
therefore space du over dx equals straight u open square brackets 1 over straight x plus fraction numerator log left parenthesis log space straight x right parenthesis over denominator straight x end fraction close square brackets
therefore space du over dx equals left parenthesis log space straight x right parenthesis to the power of log space straight x end exponent open square brackets 1 over straight x plus fraction numerator log left parenthesis log space straight x right parenthesis over denominator straight x end fraction close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 2 right parenthesis
also space straight v equals left parenthesis 1 plus straight x right parenthesis to the power of 2 straight x end exponent
therefore space log space straight v equals log left parenthesis 1 plus straight x right parenthesis to the power of 2 straight x end exponent equals 2 left square bracket straight x. log left parenthesis 1 plus straight x right parenthesis right square bracket
therefore space 1 over straight u du over dx equals 2 open square brackets straight x. fraction numerator 1 over denominator 1 plus straight x end fraction plus log left parenthesis 1 plus straight x right parenthesis.1 close square brackets
therefore space du over dx equals 2 left parenthesis 1 plus straight x right parenthesis to the power of 2 straight x end exponent open square brackets fraction numerator straight x over denominator 1 plus straight x end fraction plus log left parenthesis 1 plus straight x right parenthesis close square brackets space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 3 right parenthesis
75 Views

Advertisement
Advertisement
269. Differentiate the following w.r.t. x :
     xx + x1/x
76 Views

270.

Differentiate the following w.r.t. x 
   xx + (1 + x)log x

73 Views

Advertisement