from Mathematics Continuity and Differentiability

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

441. Differentiate the following functions w.r.t.x: cot to the power of negative 1 end exponent left parenthesis cosec space straight x plus cot space straight x right parenthesis
92 Views

442. Differentiate the following functions w.r.t.x: cos to the power of negative 1 end exponent left parenthesis sin space straight x right parenthesis
79 Views

443. Find space dy over dx comma space when space straight y equals sin to the power of negative 1 end exponent straight x plus sin to the power of negative 1 end exponent square root of 1 minus straight x squared end root.
85 Views

444. Differentiate space straight x to the power of straight x sin to the power of negative 1 end exponent square root of straight x space straight w. straight r. straight t. straight x.
77 Views

Advertisement
Advertisement

445. If space straight y equals sin left parenthesis 2 space sin to the power of negative 1 end exponent straight x right parenthesis comma space show space that space dy over dx equals 2 square root of fraction numerator 1 minus straight y squared over denominator 1 minus straight x squared end fraction end root.


Here space space space space space space straight y equals sin left parenthesis 2 space sin to the power of negative 1 end exponent straight x right parenthesis
Put space sin to the power of negative 1 end exponent straight x equals straight theta space straight i. straight e. space straight x equals sin space straight theta
therefore space space space space space space space space space space space straight y equals sin space 2 straight theta space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis 1 right parenthesis
therefore space space space space space dy over dx equals 2 space cos space 2 straight theta equals 2 square root of 1 minus sin squared space straight theta end root
therefore space space space space space dy over dx equals 2 square root of 1 minus straight y squared end root space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space of space left parenthesis 1 right parenthesis right square bracket
Now space dy over dx equals dy over dθ cross times dθ over dx
space space space space space space space space space space space space space space space space space equals 2 square root of 1 minus straight y squared end root cross times fraction numerator 1 over denominator square root of 1 minus straight x squared end root end fraction comma space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space left square bracket because space straight theta equals sin to the power of negative 1 end exponent straight x right square bracket
therefore space space space space space space dy over dx equals 2 square root of fraction numerator 1 minus straight y squared over denominator 1 minus straight x squared end fraction end root.
73 Views

Advertisement
446. Find space dy over dx space of space the space following space cos to the power of negative 1 end exponent open parentheses fraction numerator 1 minus straight x squared over denominator 1 plus straight x squared end fraction close parentheses comma space 0 less than straight x less than 1 space straight w. straight r. straight t. straight x. space
93 Views

447. Differentiate space tan to the power of negative 1 end exponent open parentheses fraction numerator square root of 1 plus straight x squared end root minus 1 over denominator straight x end fraction close parentheses comma 0 less than straight x less than 1 comma space straight w. straight r. straight t. straight x.
92 Views

448. Find space dy over dx space in space the space following space colon
space sin to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction close parentheses
84 Views

Advertisement
449. Find space fraction numerator dy over denominator dx space end fraction space in space the space following space
space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close parentheses
91 Views

450. Find space dy over dx space in space the space following space colon
space tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight x minus straight x cubed over denominator 1 minus 3 straight x squared end fraction close parentheses comma space minus fraction numerator 1 over denominator square root of 3 end fraction less than straight x less than fraction numerator 1 over denominator square root of 3 end fraction
87 Views

Advertisement