from Mathematics Continuity and Differentiability

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

601. Verify Roll's Theorem for the function :straight f left parenthesis straight x right parenthesis equals space 4 space sin space straight x space in space left square bracket 0 comma space straight pi right square bracket.
72 Views

602. If space space straight f open parentheses straight x close parentheses equals open curly brackets table attributes columnalign left end attributes row cell fraction numerator sin open parentheses straight a plus 1 close parentheses plus 2 sinx over denominator straight x end fraction comma space straight x less than 0 end cell row cell 2 space space space space space space space space space space space space space space space space space space space space space space comma space x equals 0 end cell row cell fraction numerator square root of 1 plus b x end root minus 1 over denominator straight x end fraction space space space space space space comma space straight x greater than 0 end cell end table close
is continuous at x = 0, then find the values of a and b.
1266 Views

Advertisement

603. if space cos space left parenthesis straight a plus straight y right parenthesis space equals space cos space straight y space then space prove space that space dy over dx space equals fraction numerator cos squared left parenthesis straight a plus straight y right parenthesis over denominator sin space straight a end fraction
Hence space show space that space sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction plus sin space 2 space left parenthesis straight a plus straight y right parenthesis dy over dx equals 0


Given space that comma

straight x space cos space left parenthesis straight a plus straight y right parenthesis space equals space cos space straight y space.... space left parenthesis straight i right parenthesis

rightwards double arrow space straight x space equals space fraction numerator cos space straight y over denominator cos space left parenthesis straight a space plus space straight y right parenthesis end fraction space... space left parenthesis ii right parenthesis

Differentiating space both space sides space of space the space equation space left parenthesis straight i right parenthesis comma space we space have comma

straight x space left parenthesis negative sin space left parenthesis straight a space plus space straight y right parenthesis right parenthesis space dy over dx equals space minus space cos space left parenthesis straight a plus straight y right parenthesis space equals negative sin space straight y space dy over dx

rightwards double arrow space space open square brackets sin space straight y minus space straight x space sin space left parenthesis straight a space plus space straight y right parenthesis close square brackets dy over dx space equals space minus cos space left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space open square brackets sin space straight y space minus fraction numerator cos space straight y over denominator cos space left parenthesis straight a plus straight y right parenthesis end fraction sin space left parenthesis straight a space plus space straight y right parenthesis close square brackets dy over dx space space equals negative cos space left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space open square brackets fraction numerator cos space left parenthesis straight a space plus space straight y right parenthesis space space straight x space space sin space straight y space minus space cos space straight y space sin space left parenthesis straight a space plus space straight y right parenthesis over denominator cos space left parenthesis straight a plus straight y right parenthesis end fraction close square brackets dy over dx space equals space minus space cos left parenthesis straight a space plus space straight y right parenthesis space

rightwards double arrow space open square brackets cos space left parenthesis straight a space plus space straight y right parenthesis space straight x space sin space straight y space minus space cosy space space straight x space space sin space left parenthesis straight a space plus space straight y right parenthesis close square brackets dy over dx equals negative cos left parenthesis straight a space plus space straight y right parenthesis space space straight x space space cos space left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space space open square brackets sin space left parenthesis straight a space plus space straight y space minus space straight y right parenthesis close square brackets dy over dx space space equals space minus cos squared left parenthesis straight a space plus space straight y right parenthesis space space space space space open square brackets sin left parenthesis straight A minus straight B right parenthesis space equals space sinA space cos space straight B space minus space cosA space sinB close square brackets

rightwards double arrow left square bracket sina space right square bracket space dy over dx equals negative cos squared left parenthesis straight a space plus space straight y right parenthesis

rightwards double arrow space dy over dx space equals fraction numerator negative cos squared left parenthesis straight a space plus space straight y right parenthesis over denominator sin space straight a space end fraction space space space space.. space left parenthesis iii right parenthesis

differentiating space once space again space with space respect space to space straight x space comma we space have comma

sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space 2 cos left parenthesis straight a space plus space straight y right parenthesis space sin space left parenthesis straight a space plus space straight y right parenthesis dy over dx

rightwards double arrow space sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space 2 space cos space left parenthesis straight a space plus space straight y right parenthesis space sin space left parenthesis straight a space plus space straight y right parenthesis dy over dx equals 0

rightwards double arrow space sin space straight a space fraction numerator straight d squared straight y over denominator dx squared end fraction space plus space sin space 2 space left parenthesis straight a space plus space straight y right parenthesis dy over dx equals 0

Hence space proved.
1206 Views

Advertisement
604. Find space dy over dx space if space straight y equals sin to the power of negative 1 end exponent open square brackets fraction numerator 6 straight x minus 4 square root of 1 minus 4 straight x squared end root over denominator 5 end fraction close square brackets
783 Views

Advertisement
605.

Show that the function straight f left parenthesis straight x right parenthesis space equals space open vertical bar straight x minus 3 close vertical bar comma space straight x element of bold R bold comma is  continuous but not differentiable at x=3. 

281 Views

606.

Determine the value of the constant ‘k’ so that the function  is continuous at x = 0.

837 Views

 Multiple Choice QuestionsLong Answer Type

607.

For what value of k is the following function continuous at x = 2?

f ( x )  =2x + 1     ;   x<2    k            ;   x = 2        3x - 1  ;   x>1       


608.

Differentiate the following function w.r.t. x:

y = sinxx + sin-1x


Advertisement
609.

Find dydx if (x2 + y2)2 = xy.


610.

If y =3 cos ( log x ) + 4 sin ( log x ), then show that x2 d2ydx2 + x dydx + y = 0


Advertisement