Show that the function is continuous but not differentiable at x=3.
Determine the value of the constant ‘k’ so that the function is continuous at x = 0.
For what value of k is the following function continuous at x = 2?
f ( x ) =2x + 1 ; x<2 k ; x = 2 3x - 1 ; x>1
Differentiate the following function w.r.t. x:
y = sinxx + sin-1x
Find dydx if (x2 + y2)2 = xy.
If y =3 cos ( log x ) + 4 sin ( log x ), then show that x2 d2ydx2 + x dydx + y = 0
y = 3 cos ( log x ) + 4 sin ( log x )
Differentiating the above function with respect to x, we have,
dydx = - 3 cos log x x + 4 cos log x x x dydx = - 3 cos log x + 4 cos log x
Again differentiating the above function with respect to x, we have,
xd2ydx2 + dydx = - 3 cos log x x - 4 sin log x x⇒ x2d2ydx2 + xdydx = - 3 cos log x + 4 sin log x ⇒ x2d2ydx2 + xdydx = - y⇒ x2d2ydx2 + xdydx + y = 0